Summe Unterräume II < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie: Für drei (endlichdimensionale) Unterräume [mm] U_{i} [/mm] eines Vektorraumes V gilt:
4 dim [mm] U_{1} [/mm] + 4 dim [mm] U_{2} [/mm] + 4 dim [mm] U_{3} [/mm] = dim [mm] ((U_{1} \cap U_{2})+U_{3}) [/mm] + dim [mm] ((U_{2} \cap U_{3})+U_{1}) [/mm] + dim [mm] ((U_{3} \cap U_{1})+U_{2}) [/mm] + dim [mm] ((U_{1}+U_{2})\cap U_{3}) [/mm] + dim [mm] ((U_{2}+U_{3})\cap U_{1}) [/mm] + dim [mm] ((U_{3}+U_{1})\cap U_{2}) [/mm] + 3dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}) [/mm] + 3dim [mm] (U_{1} \cap U_{2} \cap U_{3}). [/mm] |
Mein Ansatz:
Aus 4 dim [mm] U_{1} [/mm] + 4 dim [mm] U_{2} [/mm] + 4 dim [mm] U_{3} [/mm] habe ich erstmal die 4 und dim ausgeklammert, also 4dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}).
[/mm]
Die entstandene Klammer habe ich dann umgeschrieben in dim [mm] ((U_{1} [/mm] + [mm] U_{2}) [/mm] + [mm] U_{3})+dim (U_{1} [/mm] + [mm] (U_{2} [/mm] + [mm] U_{3})) [/mm] + dim [mm] ((U_{1} [/mm] + [mm] U_{3}) [/mm] + [mm] U_{2}) [/mm] + dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}).
[/mm]
Jetzt wollte ich auf die einzelnen Summanden den Dimensionssatz anwenden, der besagt, dass dim(U+W)=dim U + dim W - [mm] dim(U\cap [/mm] W) ist.
Allerdings habe ich jetzt Probleme den 3. Unterraum in der Formel unterzubringen.
Darum würde ich gerne dafür einen Tipp bekommen bzw. wissen, ob mein Ansatz schon mal in die richtige Richtung geht.
MfG Ne0the0ne
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:58 Fr 09.01.2015 | Autor: | fred97 |
> Zeigen Sie: Für drei (endlichdimensionale) Unterräume
> [mm]U_{i}[/mm] eines Vektorraumes V gilt:
> 4 dim [mm]U_{1}[/mm] + 4 dim [mm]U_{2}[/mm] + 4 dim [mm]U_{3}[/mm] = dim [mm]((U_{1} \cap U_{2})+U_{3})[/mm]
> + dim [mm]((U_{2} \cap U_{3})+U_{1})[/mm] + dim [mm]((U_{3} \cap U_{1})+U_{2})[/mm]
> + dim [mm]((U_{1}+U_{2})\cap U_{3})[/mm] + dim [mm]((U_{2}+U_{3})\cap U_{1})[/mm]
> + dim [mm]((U_{3}+U_{1})\cap U_{2})[/mm] + 3dim [mm](U_{1}[/mm] + [mm]U_{2}[/mm] +
> [mm]U_{3})[/mm] + 3dim [mm](U_{1} \cap U_{2} \cap U_{3}).[/mm]
> Mein Ansatz:
> Aus 4 dim [mm]U_{1}[/mm] + 4 dim [mm]U_{2}[/mm] + 4 dim [mm]U_{3}[/mm] habe ich
> erstmal die 4 und dim ausgeklammert, also 4dim [mm](U_{1}[/mm] +
> [mm]U_{2}[/mm] + [mm]U_{3}).[/mm]
Das kannst Du doch nicht machen !!!
Stell Dir vor, es wäre [mm] U_1=U_2=U_3 [/mm] und dim [mm] U_1=1.
[/mm]
Dann ist [mm] U_1+U_2+U_3 [/mm] = [mm] U_1.
[/mm]
Nach Deiner "Rechnung" hätten wir:
12=4.
FRED
> Die entstandene Klammer habe ich dann umgeschrieben in dim
> [mm]((U_{1}[/mm] + [mm]U_{2})[/mm] + [mm]U_{3})+dim (U_{1}[/mm] + [mm](U_{2}[/mm] + [mm]U_{3}))[/mm] +
> dim [mm]((U_{1}[/mm] + [mm]U_{3})[/mm] + [mm]U_{2})[/mm] + dim [mm](U_{1}[/mm] + [mm]U_{2}[/mm] +
> [mm]U_{3}).[/mm]
>
> Jetzt wollte ich auf die einzelnen Summanden den
> Dimensionssatz anwenden, der besagt, dass dim(U+W)=dim U +
> dim W - [mm]dim(U\cap[/mm] W) ist.
>
> Allerdings habe ich jetzt Probleme den 3. Unterraum in der
> Formel unterzubringen.
> Darum würde ich gerne dafür einen Tipp bekommen bzw.
> wissen, ob mein Ansatz schon mal in die richtige Richtung
> geht.
>
> MfG Ne0the0ne
|
|
|
|
|
Vielen Dank schon mal für die Korrigierung.
Ich stehe immer noch an dem Punkt der Orientierungslosigkeit.
Ich weiß nur, dass ich den Dimensionssatz anwenden muss.
Anbei habe ich bei Recherchen diese Formel gefunden:
dim U + dim V + dim W = dim (U+V+W) + dim ((U+V) [mm] \cap [/mm] W) + dim (U [mm] \cap [/mm] V)
Allerdings habe ich hier das Problem mit der Umsetzung der Formel aufgrund der vierfachen Dimension (lt. Aufgabenstellung).
|
|
|
|
|
> Vielen Dank schon mal für die Korrigierung.
> Ich stehe immer noch an dem Punkt der
> Orientierungslosigkeit.
> Ich weiß nur, dass ich den Dimensionssatz anwenden muss.
Hallo,
ja, so ist es.
>
> Anbei habe ich bei Recherchen diese Formel gefunden:
> dim U + dim V + dim W = dim (U+V+W) + dim ((U+V) [mm]\cap[/mm] W) +
> dim (U [mm]\cap[/mm] V)
Hui, das war sicher nicht gleich der allererste Treffer.
Normalerweise lernt man den Dimensionssatz so: sind A,B Unterräume von V, so gilt
[mm] dim(A+B)=dimA+dimB-dim(A\cap [/mm] B).
So wird es sicher auch in der VL drangewesen sein.
Mit dem Wissen, daß für Unterräume U,V,W eines VRes V'
U+V ein Unterraum ist,
bekommst Du die Formel, die Du gefunden hast.
Rechne das ruhig mal nach - es scheint mir für Deine Aufgabenstellung nicht ganz unnütz zu sein...
Ich würde bei Deiner Aufgabe mit der rechten Seite der Gleichung beginnen, und so lange weitermachen, bis die linke dasteht. Schau:
[mm] \red{dim (\underbrace{(U_{1} \cap U_{2})}_{A}+\underbrace{U_{3}}_{B})} [/mm] + dim [mm] ((U_{2} \cap U_{3})+U_{1}) [/mm] + dim [mm] ((U_{3} \cap U_{1})+U_{2}) [/mm] + dim [mm] ((U_{1}+U_{2})\cap U_{3}) [/mm] + [mm] dim((U_{2}+U_{3})\cap U_{1}) [/mm] + dim [mm] ((U_{3}+U_{1})\cap U_{2}) [/mm] + 3dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}) [/mm] + 3dim [mm] (U_{1} \cap U_{2} \cap U_{3})
[/mm]
[mm] =\red{dim (U_{1} \cap U_{2})+dimU_{3}-dim(U_1\cap U_2\cap U_3)} [/mm] + dim [mm] ((U_{2} \cap U_{3})+U_{1}) [/mm] + dim [mm] ((U_{3} \cap U_{1})+U_{2}) [/mm] + dim [mm] ((U_{1}+U_{2})\cap U_{3}) [/mm] + dim [mm] ((U_{2}+U_{3})\cap U_{1}) [/mm] + dim [mm] ((U_{3}+U_{1})\cap U_{2}) [/mm] + 3dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}) [/mm] + 3dim [mm] (U_{1} \cap U_{2} \cap U_{3})
[/mm]
=dim [mm] (U_{1} \cap U_{2})+dimU_{3}+ [/mm] dim [mm] ((U_{2} \cap U_{3})+U_{1}) [/mm] + dim [mm] ((U_{3} \cap U_{1})+U_{2}) [/mm] + dim [mm] ((U_{1}+U_{2})\cap U_{3}) [/mm] + dim [mm] ((U_{2}+U_{3})\cap U_{1}) [/mm] + dim [mm] ((U_{3}+U_{1})\cap U_{2}) [/mm] + 3dim [mm] (U_{1} [/mm] + [mm] U_{2} [/mm] + [mm] U_{3}) [/mm] + 2dim [mm] (U_{1} \cap U_{2} \cap U_{3}),
[/mm]
und dann so in diesem Stile weiterfrickeln.
LG Angela
>
> Allerdings habe ich hier das Problem mit der Umsetzung der
> Formel aufgrund der vierfachen Dimension (lt.
> Aufgabenstellung).
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:01 Sa 10.01.2015 | Autor: | Ne0the0ne |
Vielen, vielen lieben Dank für deine Hilfe.
Konnte endlich die Aufgabe lösen.
Habe durch deine Hilfestellung verstanden, dass die Summanden in der Dimensionsformel auch schon Durchschnittsmengen sein können! (Oh man, ich komme mir vor wie ein Anfänger)
Die "Formel" für 3 UVR stellte sich in der Tat als hilfreich heraus.
|
|
|
|