Topologie, nicht metrisierbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Auf der Menge X = [mm] \{ 1, 2\} [/mm] ist [mm] \tau [/mm] = [mm] \{ \{\}, \{1\},X \} [/mm] eine nichttriviale Topologie, die nicht metrisierbar ist:
Erklärung im SKript:
Angenommen , es wäre d eine Metrik auf X mit [mm] \tau [/mm] = [mm] \tau_d. [/mm] Da [mm] \{1\} [/mm] offen ist und 1 [mm] \in \{ 1\} [/mm] gilt, gibt es ein [mm] \epsilon>0 [/mm] mit [mm] U_\epsilon [/mm] (1) [mm] \subseteq \{1\} [/mm] (und somit [mm] U_\epsilon [/mm] (1) = [mm] \{1 \}), [/mm] weil stets x [mm] \in U_\epsilon(x) [/mm] gilt)
Wegen 2 [mm] \not\in \{1\} [/mm] muss d(2,1) [mm] \ge \epsilon [/mm] gelten und daher [mm] U_\epsilon [/mm] (2)= [mm] \{2\}
[/mm]
-> [mm] \{2\} [/mm] offen sein -> Def [mm] von\tau [/mm] widerspricht |
Hallo
Was ist der Unterschied zwischen 1 und [mm] \{1\} [/mm] ?
Warum besteht nun [mm] U_\epsilon(1) [/mm] = [mm] \{1 \} [/mm] (die Richtung [mm] U_\epsilon [/mm] (1) [mm] \subseteq \{1\} [/mm] ist klar, auch dass 1 [mm] \in U_\epsilon [/mm] (x) ist, hier scheitert es eben an der oberen Frage mit den Unterschied)
Warum [mm] U_\epsilon [/mm] (2)= [mm] \{2\} [/mm] ?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:25 Di 16.04.2013 | Autor: | cycore |
Hallo theresetom,
> [...]
> Was ist der Unterschied zwischen 1 und [mm]\{1\}[/mm] ?
Das eine ist ein Element von [mm]X[/mm] und das andere eine (Teil-)Menge. Es gilt z.B. (, und das sollte den Unterschied verdeutlichen,) [mm]1\in\{1\}\subset X[/mm].
> Warum besteht nun [mm]U_\epsilon(1)[/mm] = [mm]\{1 \}[/mm] (die Richtung
> [mm]U_\epsilon[/mm] (1) [mm]\subseteq \{1\}[/mm] ist klar, auch dass 1 [mm]\in U_\epsilon[/mm]
> (x) ist, hier scheitert es eben an der oberen Frage mit den
> Unterschied)
Nun — Du zeigst es doch. Einerseits ist [mm]U_\varepsilon(1)\subset\{1\}[/mm] nach Annahme und andererseits ist für alle [mm]\varepsilon>0[/mm] per Definition [mm]1\in U_\varepsilon(1)[/mm] (was gleichbedeutend ist mit [mm]\{1\}\subset U_\varepsilon(1)[/mm]). Damit gilt gleichheit.
> Warum [mm]U_\epsilon (2)= \{2\}[/mm] ?
Gehen wir die Argumente Schritt für Schritt nochmal durch.
Es ist [mm]2\not\in\{1\} = U_\varepsilon(1)[/mm], also muss per Definition von [mm]U_\varepsilon(1)[/mm] gelten, daß [mm]d(1,2)\geq\varepsilon[/mm]. Daher ist aber auch [mm]1[/mm] nicht in [mm]U_\varepsilon(2)[/mm] enthalten. Dann kann aber (wegen [mm]2\in U_\epsilon(2)[/mm]) nur [mm]U_\epsilon (2)= \{2\}[/mm] sein.
Ab hier klar? Hoffe ich konnte helfen.
Gruß, cycore
|
|
|
|