Untervektorraum des R^4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:31 Do 17.11.2005 | Autor: | tempo |
Hallo,
habe folgende Aufgabe:
Sei V [mm] \subset \IR^{4} [/mm] gegeben durch [mm] V=[(x_1,...,x_4) \in \IR^{4} [/mm] | [mm] 2x_1-x_2+x_3+x_4=0]. [/mm] Zeigen Sie, daß V ein Untervektorraum ist und bestimmen Sie einen 1-dimensionalen Vektorraum W (durch angabe einer Basis), so daß [mm] \IR^4 [/mm] = V+W.
ich habe damit angefangen zu prüfen ob ursprung in V liegt und durch einsetzen von (0,0,0,0) in V gezeigt das V nicht leer ist und das ursprung drin liegt (soweit noch kein problem). nun habe ich mir einfach 2 vektoren in V genommen (z.B. u=(1,2,0,0) und w=(0,2,1,1)) und gezeigt das auch u+v in V liegen (bzw. auch [mm] \lambda*u [/mm] z.B.). darf ich das so machen und reicht das? oder muss ich noch weitere vektoren prüfen (bzw. allgemeiner meinen beweis ausdrücken?) und das andere "problem" ist der zweite teil der aufgabe: also ein 1-dim. vektorraum ist für mich eine gerade und die schnittmenge mit solcher ist ebenfalls max. 1-dimensional. wenn jetzt aber V+W =dim4 sein soll, muss ja V bereits die dim=4 haben oder? und damit wäre ja die "gerade" (der 1-dim. vektorraum) beliebig?! oder habe ich da irgendwo einen denkfehler?
|
|
|
|
> Sei V [mm]\subset \IR^{4}[/mm] gegeben durch [mm]V=[(x_1,...,x_4) \in \IR^{4}[/mm]
> | [mm]2x_1-x_2+x_3+x_4=0].[/mm] Zeigen Sie, daß V ein
> Untervektorraum ist und bestimmen Sie einen 1-dimensionalen
> Vektorraum W (durch angabe einer Basis), so daß [mm]\IR^4[/mm] =
> V+W.
Hallo,
Dafür, daß V ein Untervektorraum des [mm] \IR-Vektorraumes \IR^4 [/mm] ist,
hast Du drei Dinge zu prüfen:
1) V [mm] \not= \emptyset [/mm]
2) Für alle v, w [mm] \in [/mm] V gilt: v+w [mm] \in [/mm] V
3) Für alle v [mm] \in [/mm] V und für alle c [mm] \in \IR: [/mm] cv [mm] \in [/mm] V
1) Du hast ein Element gefunden, welches in V liegt, und somit ist V nicht leer.
Ob das gefundene Element die Null ist, oder irgendein anderes, ist völlig schnuppe.
> ich habe damit angefangen zu prüfen ob ursprung in V liegt
> und durch einsetzen von (0,0,0,0) in V gezeigt das V nicht
> leer ist und das ursprung drin liegt (soweit noch kein
> problem).
Jedenfalls können wir Punkt 1) abhaken.
2)
nun habe ich mir einfach 2 vektoren in V genommen
> (z.B. u=(1,2,0,0) und w=(0,2,1,1)) und gezeigt das auch u+v
> in V liegen (bzw. auch [mm]\lambda*u[/mm] z.B.). darf ich das so
> machen und reicht das?
Nein, das reicht nicht.
> oder muss ich noch weitere vektoren
> prüfen
Ja, sehr, sehr viele. Du wärest bis an Dein Lebensende beschäftigt...
>(bzw. allgemeiner meinen beweis ausdrücken?)
Das ist die Methode der Wahl! Du ahntest es ja selbst schon: es ist für alle Vektoren aus V zu zeigen, daß die Summe auch drin liegt.
Im Prinzip macht man das so, wie Du es mit Deinem Beispiel gemacht hast.
Seien v:= [mm] \vektor{v_1 \\ v_2 \\ v_3 \\ v_4 }, [/mm] w:= [mm] {w_1 \\ w_2 \\ w_3 \\ w_4 }\in [/mm] V
( Das bedeutet ja, daß die [mm] v_i [/mm] und [mm] w_i [/mm] die Gleichung [mm] 2x_1-x_2+x_3+x_4=0 [/mm] lösen.)
Nun mußt Du zeigen, daß auch v+w [mm] \in [/mm] V, d.h., daß die [mm] v_i+w_i [/mm] auch Lösung dieser Gleichung sind.
3) In Prinzip wie 2)
Möglicherweise hakt Ihr Punkt2) und 3) in einem ab, d.h., Ihr zeigt, daß mit [mm] c\in \IR [/mm] und v,w [mm] \in [/mm] V auch c(v+w) [mm] \in [/mm] V. Ist Geschmackssache, kann man auch machen. Wenn Du das Prinzip jetzt verstanden hast, dürftest Du damit keine Schwierigkeiten mehr haben.
und das
> andere "problem" ist der zweite teil der aufgabe: also ein
> 1-dim. vektorraum ist für mich eine gerade
Nicht nur für Dich. Also: richtig.
und die
> schnittmenge mit solcher ist ebenfalls max. 1-dimensional.
Das stimmt zwar, hat aber mit dieser Aufgabe absolut nichts zu tun.
Hier geht es nicht um Schnitte, sondern um SUMMEN, das sind ganz bestimmte VEREINIGUNGEN von Vektorräumen.
> wenn jetzt aber V+W =dim4
Es läuft also darauf hinaus, daß V+W den ganzen [mm] \IR^4 [/mm] ergeben soll, das sagt ja dim(V+W)=4
Also V+W= [mm] \IR^4.
[/mm]
Dahinter verbirgt sich folgendes: zum einen soll [mm] \IR^4 [/mm] die Vereinigung von V und W sein, also [mm] \IR^4= [/mm] V [mm] \cup \W,
[/mm]
zum zweiten sollen V,W so sein, daß V [mm] \cap [/mm] W= { [mm] \vektor{ 0 \\ 0 \\ 0 \\ 0 } [/mm] }.
Die Aufgabe läuft auf folgendes hinaus:
Bestimme eine Basis von V (die Aufgabenstellung legt den Verdacht nahe,daß dim V=3 ist...) und ergänze diese zu einer Basis des [mm] \IR^4. [/mm]
Dein "Ergänzungsvektor" ist dann derjenige, welcher den gesuchten Vektorraum W aufspannt.
Ich hoffe, daß Du nun auf den rechten Weg gebracht bist.
Gruß v. Angela
sein soll, muss ja V bereits die
> dim=4 haben oder? und damit wäre ja die "gerade" (der
> 1-dim. vektorraum) beliebig?! oder habe ich da irgendwo
> einen denkfehler?
|
|
|
|