Verteilungsannahmen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen!
Nach meiner Frage von gestern habe ich noch ein bißchen weiter recherchiert und gegrübelt und das ganze auf eine einzige Fragestellung heruntergebrochen:
Welcher Verteilung folgt dieser Ausdruck: [mm]\bruch{\chi^{2}}{n}[/mm]?
Bekanntlich gilt ja [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm]. Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm], dann könnte man ja auch direkt schreiben [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?
Ich habe diese Frage noch nie irgendwo anders gestellt als in meinem Kopf.
|
|
|
|
Hallo [mm] $\backslash$ [/mm] !
> Welcher Verteilung folgt dieser Ausdruck:
> [mm]\bruch{\chi^{2}}{n}[/mm]?
> Bekanntlich gilt ja
> [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm].
> Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm],
> dann könnte man ja auch direkt schreiben
> [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man
> aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?
Das "also" verwirrt mich etwas. Es gibt ja auch Verteilungen, die nicht gerade einer [mm] $\chi^2$-, [/mm] F- oder Normalverteilung entsprechen. Einige Verteilungen haben einfach keinen Namen.
Zu Deiner Vermutung: Angenommen es gilt [mm] $X\sim\chi^2_m$. [/mm] Dann folgt ja bekanntlich $E(X)=m$ und $Var(X)=2m$. Würde nun [mm] $\frac{X}{n}\sim\chi^2_k$ [/mm] gelten (mit einem noch zu bestimmenden Freiheitsgrad $k$), müsste gelten:
$E(X/n)=k$ und $Var(X/n)=2k$, also
$m/n=k$ und [mm] $2m/n^2=2k$, [/mm] was zu einem Widerspruch führt, da $k,m>0$.
Die Verteilung von [mm] $\frac{X}{n}$ [/mm] hat vermutlich keinen Namen, eventuell skalierte [mm] $\chi^2$-Verteilung [/mm] (nichtzentral gibt es auf jeden Fall, aber skaliert habe ich noch nicht gehört), und man begnügt sich damit, dass man weiß, wie $X$ verteilt ist. Damit kann man ja schnellstens alles Wichtige bestimmen. Normalverteilt ist diese Zufallsvariable bestimmt nicht.
> Ich habe diese Frage noch nie irgendwo anders gestellt als
> in meinem Kopf.
Viele Grüße
Brigitte
|
|
|
|