www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Vollständige Induktion
Vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: 2 Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:23 Di 25.10.2005
Autor: frau-u

Hi,

Ich habe gerade einige Aufgaben zur vollständigen Induktion gemacht. Leider ist mir bei 2 Aufgaben die Lösung noch unklar. Wäre nett, wenn ihr mir helfen könntet.

1. Aufgabe:
[mm] a^n-b^n=(a-b)* \summe_{k=0}^{n-1}*a^k*b^{n-k-1} [/mm]

Mich verwirrt die Angabe von k und n-1 im Summensymbol, daher bin ich mir nicht einmal sicher, ob der erste Schritt korrekt ist:
I. [mm] a^1-b^1 [/mm] = [mm] (a-b)*a^0*b^{0-0} [/mm]

Stimmt das?
Und wie geht es dann weiter?


2. Aufgabe:
[mm] \summe_{k=1}^{n}k^3=(\bruch{n(n+1)}{2})^2 [/mm]

Dabei stört mich die ^3 bzw die ^2
Für  [mm] \summe_{k=1}^{n}k=(\bruch{n(n+1)}{2}) [/mm] klappt die vollständige Induktion problemlos:
[mm] 1+2+3+...+n_{0}+(n_{0}+1)=\bruch{n_{0}(n+1)}{2}+(n_{0}+1) [/mm]
= [mm] \bruch{n_{0}(n+1)}{2}+\bruch{2(n_{0}+1)}{2} [/mm]

= [mm] \bruch{(n_{0}+1)*(n_{0}+2)}{2} [/mm]

Kann ich meine Aufgabe dann irgendwie analog lösen?

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 25.10.2005
Autor: Bastiane

Hallo!

> 1. Aufgabe:
>  [mm]a^n-b^n=(a-b)* \summe_{k=0}^{n-1}*a^k*b^{n-k-1}[/mm]
>  
> Mich verwirrt die Angabe von k und n-1 im Summensymbol,
> daher bin ich mir nicht einmal sicher, ob der erste Schritt
> korrekt ist:

Betrachte das n einfach also Konstante - die Summe läuft ja über k, deswegen ist das k in der Summenformel erstmal wichtig.

>  I. [mm]a^1-b^1[/mm] = [mm](a-b)*a^0*b^{0-0}[/mm]
>  
> Stimmt das?

[daumenhoch] - ja, das stimmt. Denn du hast ja überall n=1 gesetzt, und k einfach k sein lassen. ;-)

>  Und wie geht es dann weiter?

Du musst doch jetzt folgendes zeigen:

[mm] a^{n+1}-b^{n+1}=(a-b)*\summe_{k=0}^na^kb^{n-k} [/mm]

Diese Summe kannst du dann aufteilen in den Teil von 0 bis n-1 und den Teil für k=n - und auf den ersten kannst du dann die Induktionsvoraussetzung anwenden.

> 2. Aufgabe:
>   [mm]\summe_{k=1}^{n}k^3=(\bruch{n(n+1)}{2})^2[/mm]
>  
> Dabei stört mich die ^3 bzw die ^2

Was stört dich denn an "hoch 3" und "hoch 2"? Du kannst den Beweis sicher ganz analog führen. Ansonsten kannst du die Klammer auf der rechten Seite auch einfach auflösen. Probiere doch wenigstens mal den Induktionsanfang.

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Vollständige Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 26.10.2005
Autor: frau-u

Hi,

> >  Und wie geht es dann weiter?

>  
> Du musst doch jetzt folgendes zeigen:
>  
> [mm]a^{n+1}-b^{n+1}=(a-b)*\summe_{k=0}^na^kb^{n-k}[/mm]
>  
> Diese Summe kannst du dann aufteilen in den Teil von 0 bis
> n-1 und den Teil für k=n - und auf den ersten kannst du
> dann die Induktionsvoraussetzung anwenden.

Hmm, was heisst das konkret?
Hab ich dann:
[mm] a^{n+1}-b^{n+1}=(a-b)*\summe_{k=0}^{n-1}*a^{k}b^{n-k-1}*\summe_{k=n}^{n}a^{k}b^{n} [/mm] ?

> > 2. Aufgabe:
>  >   [mm]\summe_{k=1}^{n}k^3=(\bruch{n(n+1)}{2})^2[/mm]
>  >  
> > Dabei stört mich die ^3 bzw die ^2
>  
> Was stört dich denn an "hoch 3" und "hoch 2"? Du kannst den
> Beweis sicher ganz analog führen. Ansonsten kannst du die
> Klammer auf der rechten Seite auch einfach auflösen.
> Probiere doch wenigstens mal den Induktionsanfang.

Hab ich schon gemacht, bin aber dann irgendwie hängengeblieben:
1. [mm] 1^3=(\bruch{1(1+1)}{2})^2 [/mm]
Passt also.

Viel weiter komme ich dann aber nicht:
[mm] \summe_{k=1}^{n}k^3+n_{0}+1=(\bruch{n(n+1)}{2})^2+(n_{0}+1) [/mm]

Dann versuche ich das [mm] n_{0}+1 [/mm] mit in den Bruch zu packen:

[mm] =(\bruch{n_{0}^2+n_{0}+\wurzel{2n_{0}}+\wurzel{2}}{2})^2 [/mm]

Sieht mir irgendwie sinnlos aus...

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mi 26.10.2005
Autor: taura

Hallo!

> [mm]a^{n+1}-b^{n+1}=(a-b)*\summe_{k=0}^{n-1}*a^{k} b^{n-k-1}*\summe_{k=n}^{n}a^{k}b^{n}[/mm]
> ?

Nicht ganz: [mm] $(a-b)*\summe_{k=0}^n a^kb^{n-k}$ [/mm]
[mm] $=(a-b)*\red{\left(}\summe_{k=0}^{n-1} a^k b^{\red{n-k}}\ \red{+}\ \summe_{k=n}^n a^k b^{\red{n-k}} \red{\right)}$ [/mm] Hier hab ich erstmal einfach nur die Summe in zwei Teilsummen aufgeteilt, sonst alles gleich gelassen.

$ = [mm] (a-b)*\left(\summe_{k=0}^{n-1} a^k b^{n-k-1}*b \ +\ a^n b^0 \right)$ [/mm] Hier habe ich ein b in der vorderen Summe abgespaltet, ausformuliert sieht das so aus: [mm] $b^{n-k}*b^0=b^{n-k}*b^{-1+1}=b^{n-k-1}*b$, [/mm] außerdem habe ich die hintere Summe (da gibt es ja nur einen Summanden) ausgeschrieben.

[mm] $=(a-b)*\left(b*\green{\summe_{k=0}^{n-1} a^k b^{n-k-1}} \ +\ a^n \right)$ [/mm] Jetzt hab ich das b (das ja nicht vom Summenindex abhängt) vor die Summe gezogen.

Auf den grünen Term kannst du jetzt die Induktionsvorraussetzung anwenden. :-)

> Hab ich schon gemacht, bin aber dann irgendwie
> hängengeblieben:
>  1. [mm]1^3=(\bruch{1(1+1)}{2})^2[/mm]
>  Passt also.

[daumenhoch]

> Viel weiter komme ich dann aber nicht:
>  
> [mm]\summe_{k=1}^{n}k^3+n_{0}+1=(\bruch{n(n+1)}{2})^2 +(n_{0}+1)[/mm]

Hm... du musst das [mm] $n_0+1$ [/mm] dort einsetzen wo vorher n stand, nicht einfach dazuaddieren...

Das sieht in diesem Fall dann so aus:
[mm] $\summe_{k=1}^{n_0+1}k^3=\left(\br{(n_0+1)(n_0+2)}{2}\right)^2$ [/mm]

Auch hier musst du die Summe aufteilen, so dass du dann die Induktionsvoraussetzung anwenden kannst.

Versuch mal ob du damit weiter kommst :-)

Gruß taura

Bezug
                                
Bezug
Vollständige Induktion: 2. Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 26.10.2005
Autor: frau-u


> > Viel weiter komme ich dann aber nicht:
>  >  
> > [mm]\summe_{k=1}^{n}k^3+n_{0}+1=(\bruch{n(n+1)}{2})^2 +(n_{0}+1)[/mm]
>  
> Hm... du musst das [mm]n_0+1[/mm] dort einsetzen wo vorher n stand,
> nicht einfach dazuaddieren...

War wohl gestern abend zu übermüdet, aber ist klar. :)
  

> Das sieht in diesem Fall dann so aus:
>  
> [mm]\summe_{k=1}^{n_0+1}k^3=\left(\br{(n_0+1)(n_0+2)}{2}\right)^2[/mm]
>  
> Auch hier musst du die Summe aufteilen, so dass du dann die
> Induktionsvoraussetzung anwenden kannst.

Naja, irgendwie kommt mir das aus meiner vollständigen Induktion ohne das "^2" bekannt vor. Das ist ja im Prinzip die gleiche Gleichung, nur quadriert(oder???).

[mm] 1+2+3+...+n_{0}+(n_{0}+1)=\bruch{n_{0}(n+1)}{2}+(n_{0}+1) [/mm]
= [mm] \bruch{n_{0}(n+1)}{2}+\bruch{2(n_{0}+1)}{2} [/mm]

= [mm] \bruch{(n_{0}+1)*(n_{0}+2)}{2} [/mm]

Ist damit dann schon der Beweis erfolgt?

Bezug
                                        
Bezug
Vollständige Induktion: Induktionsschritt
Status: (Antwort) fertig Status 
Datum: 16:43 Mi 26.10.2005
Autor: Roadrunner

Hallo frau-u!


> [mm]1+2+3+...+n_{0}+(n_{0}+1)=\bruch{n_{0}(n+1)}{2}+(n_{0}+1)[/mm]
>  = [mm]\bruch{n_{0}(n+1)}{2}+\bruch{2(n_{0}+1)}{2}[/mm]
> = [mm]\bruch{(n_{0}+1)*(n_{0}+2)}{2}[/mm]
> Ist damit dann schon der Beweis erfolgt?

[notok] Nein, Du vergleichst hier Äpfel mit Birnen ...

Schließlich haben wir ja auf der linken Seite ein "hoch [mm] $\red{3}$" [/mm] (und kein Quadrat) !!


Du musst also folgendes zeigen:

[mm]\summe_{k=1}^{n_0+1}k^3=\left(\br{(n_0+1)(n_0+2)}{2}\right)^2[/mm]


Beginnen wir einfach mal:

[mm]\summe_{k=1}^{n+1}k^3 \ = \ \red{\summe_{k=1}^{n}k^3} + \blue{\summe_{k=n+1}^{n+1}k^3} \ = \ \red{\left[\br{n*(n+1)}{2}\right]^2} + \blue{(n+1)^3}[/mm]


Nun klammern wir mal [mm] $\left(\bruch{n+1}{2}\right)^2$ [/mm] aus und fassen zusammen, dann sind wir schon so gut wie fertig!


Gruß vom
Roadrunner




Bezug
                                                
Bezug
Vollständige Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 26.10.2005
Autor: Olek

Hallo,
ich habe eine ähnliche Aufgabe und versuche diese hier nachzuvollziehen.
Was ist denn die sinnvollere Variante Induktionsaufgaben zu lösen:
a) Auf beiden Seiten n+1 einzufügen und mit Äquivalenzumformungen so lange die Gleichung ändern bis man eine Gleichheit sieht.
b) So lange die linke Seite der Gleichung verändern, bis man eine Gleichheit mit n+1 auf der rechten Seite sieht.
Im Grunde ist es sicher fast das gleiche, aber das eine mit Äquivalenzumformungen und das andere nicht.

Nun der Bezug zum Artikell:
Bist du von Blau zu Blau und von Rot zu Rot mit einer Äquivalenzumformung gekommen, oder ist das die rechte Seite der Gleichung?
Die Frage ist also, ob du von Rot nach Rot gekommen bist, oder versuchst Rot mit Rot zu vergleichen und eine Gleichheit zu zeigen.
Beides kann ich nämlich so ohne weiteres nicht nachvollziehen. Die Summe von n+1 nach n+1 ist ja ganz einfach, aber aus einer Summe von 1 bis n einen Term ohne Summenzeichen zu schreiben bekomm ich ohne weiteres nicht hin. Gibts da was was ich wissen sollte?

Hoffe ihr versteht mein Problem und könt mir weiterhelfen.
MfG, Olek


Bezug
                                                        
Bezug
Vollständige Induktion: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 26.10.2005
Autor: Roadrunner

Hallo Olek!


> Was ist denn die sinnvollere Variante Induktionsaufgaben
> zu lösen:
> a) Auf beiden Seiten n+1 einzufügen und mit
> Äquivalenzumformungen so lange die Gleichung ändern bis man
> eine Gleichheit sieht.
> b) So lange die linke Seite der Gleichung verändern, bis
> man eine Gleichheit mit n+1 auf der rechten Seite sieht.

Das kommt auf die Aufgabe / den Aufgabentyp drauf an. Außerdem sind auch manchmal beide Varianten möglich, und dam macht man es halt nach eigener "Vorliebe ...


> Bist du von Blau zu Blau und von Rot zu Rot mit einer
> Äquivalenzumformung gekommen, oder ist das die rechte Seite
> der Gleichung?
> Die Frage ist also, ob du von Rot nach Rot gekommen bist,
> oder versuchst Rot mit Rot zu vergleichen und eine
> Gleichheit zu zeigen.

Nein, bei "rot zu rot" habe ich die Induktionsvoraussetzung für $n_$ eingesetzt.

Und bei "blau zu blau" wurde das Summenzeichen aufgelöst, da diese Summe ja nur aus genau einem Summanden besteht, nämlich: $k \ = \ n+1$ .


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Vollständige Induktion: Ist das die selbe Aufgabe?
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 26.10.2005
Autor: rope04

Hallo, bin gerade dabei irgendwie diese Aufgabe zu lösen:

Beweisen Sie mittels vollständiger Induktion, daß für alle n element N gilt:
          1³ + 2³ + 3³ + . . . + n³ = (1 + 2 + 3 + . . . + n)².

Meine Frage nun: Ist das, dass selbe was ihr gerade gemacht habt?

Bezug
                                                                        
Bezug
Vollständige Induktion: Dieselbe Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Mi 26.10.2005
Autor: Roadrunner

Hallo rope,

[willkommenmr] !!!


Ja, das ist original dieselbe Aufgabe wie Deine.

In der oben genannten Version wurde lediglich die Form

$1 + 2 + 3 + 4 + ... + n \ = \ [mm] \summe_{k=1}^{n}k [/mm] \ = \ [mm] \bruch{n*(n+1)}{2}$
[/mm]

verwendet.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Vollständige Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 26.10.2005
Autor: frau-u

Also, wenn ich nun ausklammere habe ich folgendes:
[mm] \bruch{(n+1)^2}{2}*\bruch{n^2}{2}+(n+1)^3 [/mm]
Zusammenfassen, hmm...
[mm] \bruch{(n+1)^2}{2}*\bruch{n^2}{2}+\bruch{2(n+1)^3}{2} [/mm]

Letztendlich will ich ja hierhin:
[mm] \left(\br{(n_0+1)(n_0+2)}{2}\right)^2 [/mm]

Kannst du mir (oder auch jemand anderes) noch einmal kurz beim Zusammenfassen helfen?

Bezug
                                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Do 27.10.2005
Autor: leduart

Hallo frau-u

>  [mm]\bruch{(n+1)^2}{2}*\bruch{n^2}{2}+(n+1)^3[/mm]
>  Zusammenfassen, hmm...
>  [mm]\bruch{(n+1)^2}{2}*\bruch{n^2}{2}+\bruch{2(n+1)^3}{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


2 Möglichkeiten: beide Ausdrücke voll ausrechnen (alle Klammern weg und dann erst vergleichen. Wenn einem nichts anderes einfällt geht das immer. Hier sollte man sehen, dass man ja ein Produkt von n+1 und n+2 haben will. deshalb klammert man $frac{(n+1)^2)(4)$ aus  dann kommst du zu deinem Ergebnis, wenn du die bin.Formel rückwärts kannst.

> Letztendlich will ich ja hierhin:
>  [mm]\left(\br{(n_0+1)(n_0+2)}{2}\right)^2[/mm]

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]