Vorbemerkungen zu CG-Verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:36 Sa 28.11.2015 | Autor: | sissile |
Aufgabe | Sei A [mm] \in \mathbb{R}^{n \times n} [/mm] symmetrisch und positiv defenit, b [mm] \in \mathbb{R}^n. [/mm]
Sei [mm] \phi(x)=\frac{1}{2} x^{\*}Ax-x^{\*}b, [/mm] x [mm] \in \mathbb{R}^n [/mm] und [mm] \hat{x}=A^{-1} [/mm] b.
In der Vorlesung haben wir gezeigt, dass [mm] \phi [/mm] ein eindeutiges Mimimum an der Stelle [mm] x=\hat{x} [/mm] hat.
Indem wird [mm] \phi(x) [/mm] - [mm] \phi(\hat{x})=\frac{1}{2} x^{\*}Ax [/mm] - [mm] x^{\*}b [/mm] - 1/2 [mm] \hat{x}^{\*}A\hat{x} +\hat{x}^{\*}b= \frac{1}{2} (x-\hat{x})^{\*}A(x-\hat{x})+x^{\*}A\hat{x} [/mm] - [mm] \hat{x}^{\*} A\hat{x} [/mm] - [mm] x^{\*}b [/mm] + [mm] \hat{x}^{\*} [/mm] b = [mm] \frac{1}{2} (x-\hat{x})^{\*}A(x-\hat{x}) [/mm] ausgerechnet haben.
Im komplexen Fall für A positiv definit und hermitesch, b,x [mm] \in \mathbb{C}^n [/mm] soll man sich das Funktional [mm] \phi(x)= \frac{1}{2} x^{\*} [/mm] A x - Re [mm] x^{\*} [/mm] b
anschauen.
Aber wenn ich mir da mit [mm] \hat{x}=A^{-1} [/mm] b anschauen will:
[mm] \phi(x)-\phi(\hat{x})=(x-\hat{x})^{\*} [/mm] A (x- [mm] \hat{x}) [/mm] + 2 [mm] Re(\hat{x}^{\*} [/mm] b - [mm] x^{\*}b [/mm] ) + 2 [mm] Re(x^{\*} [/mm] A [mm] \hat{x}) [/mm] - 2 [mm] \hat{x}^{\*} [/mm] A [mm] \hat{x}= (x-\hat{x})^{\*}A [/mm] (x- [mm] \hat{x})+ [/mm] 2 [mm] Re(\hat{x}^{\*} [/mm] b) - 2 [mm] \hat{x}^{\*} [/mm] b
Wieso sollten sich die letzten zwei Terme aufheben, die sind doch komplex? |
Nachzulesen in Martin Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (S.85,94).
Bzw. beim Verfahrens der konjugiersten Gradienten wird das meist so gebraucht.
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:50 So 29.11.2015 | Autor: | fred97 |
Aus A positiv definit und hermitesch fogt doch [mm] (A^{\*})^{-1}=A^{-1} [/mm] und [mm] A^{-1} [/mm] ist positiv definit. Somit haben wir
[mm] $b^{\*}A^{-1}b \ge [/mm] 0,$
insbesondere ist [mm] $b^{\*}A^{-1}b \in \IR.$
[/mm]
Nun rechne nach:
$ [mm] \hat{x}^{\*} [/mm] b= [mm] b^{\*}A^{-1}b [/mm] $
FRED
|
|
|
|