Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie den Zerfällungskörper L des jeweiligen Polynoms [mm] p_{i} \in \IQ[X] [/mm] und berechne seinen Grad
a) [mm] p_{1}(X)=(X^2+1)(X^2+4)
[/mm]
b) [mm] p_{2}(X)=(X^2+1)(X^2+3)
[/mm]
c) [mm] p_{3}(X)=(X^4+2)
[/mm]
d) [mm] p_{4}(X)=X^4+4X^2+1 [/mm] |
Hallo
in dem Zerfällungskörper zerfällt das Polynom vollständig, dass heißt, ich bestimm erstmal die Nullstellen
Zu a) [mm] x_{1}=i [/mm] ; [mm] x_{2}=-i [/mm] ; [mm] x_{3}=2i [/mm] ; [mm] x_{4}=-2i, [/mm] also lautet der Zerfällungskörper [mm] \IQ[i,-i,2i,-2i] [/mm] und das kann man ja vereinfachen zu [mm] \IQ[i], [/mm] oder?
Und der Grad von [mm] [\IQ[i]:\IQ] [/mm] ist 2.
Ich bedanke mich für jede Hilfe
Grúß
TheBozz-mismo
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:29 Do 15.12.2011 | Autor: | Lippel |
Nabend,
> Bestimmen Sie den Zerfällungskörper L des jeweiligen
> Polynoms [mm]p_{i} \in \IQ[X][/mm] und berechne seinen Grad
> a) [mm]p_{1}(X)=(X^2+1)(X^2+4)[/mm]
> b) [mm]p_{2}(X)=(X^2+1)(X^2+3)[/mm]
> c) [mm]p_{3}(X)=(X^4+2)[/mm]
> d) [mm]p_{4}(X)=X^4+4X^2+1[/mm]
> Hallo
> in dem Zerfällungskörper zerfällt das Polynom
> vollständig, dass heißt, ich bestimm erstmal die
> Nullstellen
>
> Zu a) [mm]x_{1}=i[/mm] ; [mm]x_{2}=-i[/mm] ; [mm]x_{3}=2i[/mm] ; [mm]x_{4}=-2i,[/mm] also
> lautet der Zerfällungskörper [mm]\IQ[i,-i,2i,-2i][/mm] und das
> kann man ja vereinfachen zu [mm]\IQ[i],[/mm] oder?
> Und der Grad von [mm][\IQ[i]:\IQ][/mm] ist 2.
Ist alles richtig. Kamst du nicht weiter, oder wolltest du einfach mal checken ob bisher alles richtig ist? Beim zweiten Polynom gehst du nämlich einfach genauso vor.
Die Nullstellen sind [mm] $\{\pm i, \pm i\sqrt{3}\}$. [/mm] Das heißt der Zerfällungskörper ist [mm] $\IQ(i,\sqrt{3})$.
[/mm]
Den Grad bestimmst du mithilfe von [mm] $[\IQ(i,\sqrt{3}):\IQ]=[\IQ(i,\sqrt{3}):\IQ(\sqrt{3})][\IQ(\sqrt{3}):\IQ]$
[/mm]
LG Lippel
|
|
|
|
|
Hallo. Vielen Dank für deine Antwort. Ich wollte mal checken, ob ich richtig an die Aufgabe herangehe.
Ich poste heute Abend meine Ideen für die anderen Teile
Gruß
TheBozz-mismo
|
|
|
|