Zufallsvariable finden < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:45 So 01.06.2008 | Autor: | Gero |
Aufgabe | Es sei Omega=[0,1], F die Borel-Sigma-Algbra auf Omega und P das Lebesgue-Maß. Finden Sie eine Zufallsvariable, die folgende Verteilungsfunktion hat:
[mm] F_X (t)=\begin{cases} 0, & \mbox{für } t <1 \\ 1-t^2, & \mbox{für } t \ge 1 \end{cases} [/mm] |
Hallo an alle,
bei dieser Aufgabe hab ich grad Null Ahnung, wie das funktionieren soll. Eigentlich isses wahrscheinlich nur ne Berechnung, aber da steh ich wahrscheinlich auf dem Schlauch. Kann mir vielleicht jemand hier weiterhelfen? Das wäre sehr nett!
Danke schonmal im voraus!
Grüßle
Gero
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:34 Mo 02.06.2008 | Autor: | koepper |
Hallo Gero,
die erstrebte Verteilungsfunktion F sinkt ja ab 1 und wird sogar negativ. Das ist nicht möglich.
Bitte prüfe noch einmal deine Aufgabenstellung.
LG
Will
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:49 Mo 02.06.2008 | Autor: | Gero |
Oh, stimmt. Das ist ein Tippfehler. Es gilt:
[mm] F_X (t)=\begin{cases} 0, & \mbox{für } t<1 \\ 1-t^{-2}, & \mbox{für } t \ge 1 \end{cases}
[/mm]
Danke für die Anmerkung! Kannst du mir vielleicht einen Tipp geben, wie ich sowas berechne?
Grüßle
Gero
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:24 Mo 02.06.2008 | Autor: | koepper |
Hallo Gero,
eine reelle ZV X ist eine Abbildung $X [mm] \colon \Omega \to \IR$. [/mm] Zeichne dir ein Koordinatensystem und trage auf der x-Achse [mm] $\Omega [/mm] = [0, 1]$ auf und auf der y-Achse die reellen Zahlen. Überlege dann, wie sich die Verteilungsfunktion aus dem Verlauf der ZV ergibt. Du kannst der Einfachheit halber davon ausgehen, daß die ZV monoton steigt. Da das Lebesgue-Maß P einfach gesagt die Intervallbreite mißt und $F(k) = P(X [mm] \le [/mm] k) = [mm] P(\{\omega \in \Omega \mid X(\omega) \le k\})$ [/mm] ist, sollte wegen F(1) = 0 am besten X(0) = 1 sein. Mach dir das an der Skizze klar. Wenn X nun steigt, ist F(k) genau das Urbild von k unter X. Damit dürfte die Lösung klar sein... Think!
LG
Will
|
|
|
|