bijektive Abbildungen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:00 Mi 20.02.2008 | Autor: | summath |
Aufgabe | Es sei S3 := fs1; s2; s3; s4; s5; s6g die Menge aller bijektiven Abbildungen von f1; 2; 3g auf f1; 2; 3g. Ergänzen Sie die Tabelle
x|s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)
1| 1------1-----2-----2
2| 2--------------------------------2
3| 3-------------------1-----------2
(- <- das sind Platzhalter) |
Mir ist der gewünschte Lösungsweg nicht klar. Für s1-s6 existieren ja keine Fkt. Wie soll ich dann dafür Werte finden? Danke für eure Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:31 Mi 20.02.2008 | Autor: | DerVogel |
Hallo,
vielleicht ist es sinnvoll, deine Aufgabenstellung näher zu erläutern. Was genau ist S3? Die Menge aller bijektiven Abbildungen von f1 auf f1? Was ist f1? Und was ist fs1?
Ich denke, anderen geht es ähnlich.
Gruß, DerVogel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:58 Do 21.02.2008 | Autor: | Zneques |
Hallo,
Für [mm] \{ und \} [/mm] einfach f und g zu schreiben ist aber nicht sehr übersichtlich.
Du sollst alle Abbildungen [mm] \{1,2,3\}\to\{1,2,3\} [/mm] finden und in der vorgegebenen Reihenfolge in die Tabelle setzen.
[mm] s_2(1)=1 [/mm] , Tabelle
[mm] s_2(2)=?
[/mm]
[mm] s_2(3)=?
[/mm]
Aus bijektiv folgt nun injektiv : [mm] s_2(2)\not=s_2(3) [/mm] und surjektiv : auch 2 und 3 müssen als Ergebnis vorkommen.
Da es hier genau 6 Mögliche bijektive Abb. gibt (Warum ?), müssen deine 6 Funktionen [mm] s_1 [/mm] bis [mm] s_6 [/mm] alle verschieden sein.
Was kannst du also nur für die ? einsetzen ?
Ciao.
|
|
|
|