cos/sin Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:19 Mo 09.05.2005 | Autor: | Olek |
Schönen guten Abend.
Bei der folgenden Aufgabe gibt es ein paar Dinge die ich mir selbst nicht schaffe klar zu machen. Es wäre schön, wenn mir jemand helfen könnte.
Sei M(n, K) (K= [mm] \IR [/mm] oder [mm] \IC) [/mm] versehen mit dem Skalarprodukt [mm] \left\langle a|b \right\rangle=Spur(ab^{*})
[/mm]
Zu zeigen:
Für jedes t [mm] \in \IR [/mm] hat die Matrix
A= [mm] \pmat{ \cosh t & i\sinh t \\ i\sinh t & -\cosh t } \in [/mm] M [mm] (2,\IC)
[/mm]
die Eigenschaft [mm] A^{-1}=A^{t}
[/mm]
Das was ich am wenigsten verstehe, ist was dieses h dort sucht. Nirgends steht wo es her kommt, noch hatten wir jemals in der VL etwas ähnliches.
Was ich dann als erstes machen wollte, war die Inverse Matrix suchen. Aber wie mache ich das mit [mm] \sin [/mm] und [mm] \cos?
[/mm]
Gruß,
Olek
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:17 Mo 09.05.2005 | Autor: | Olek |
Das hat mir schonmal sehr geholfen!
Ich habe fleißig vor mich hin gerechnet, und habe das hier: [mm] \cosh^2 [/mm] t - [mm] \sinh^2 [/mm] t=1 auch benutzt. Aber existiert diese Definition mit dem t innendrin? Ein t musste ich dann nämlich ausklammern um diesen Ausdruck zu erhalten, so dass ich dann am Ende die veränderte Matrix mit [mm] \bruch{1}{-t} [/mm] multipliziere. Hätte ich unten allerdings [mm] t^{2} [/mm] stehen wäre das besser, weil dann beim multiplizieren in der finalen Matrix in jedem Eintrag noch ein t steht, so wie es ja sein sollte, damit ich auf [mm] A^{t} [/mm] komme.
Hoffe du konntest folgen!?
Gruß,
Olek
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:44 Mo 09.05.2005 | Autor: | Stefan |
Hallo Olek!
[mm] $\cosh\, [/mm] t$ sollte nicht heißen [mm] "$\cosh$ [/mm] mal $t$", sondern [mm] "$\cosh$ [/mm] von $t$". Daher schreibe ich es jetzt mal in Klammern. Im Übrigen frage ich mich, warum in der Aufgabenstellung [mm] $A^t$ [/mm] steht, wo doch $A$ eh symmetrisch ist, also [mm] $A^t=A$ [/mm] gilt.
Naja, die Aufgabe geht jedenfalls so:
[mm] $A^{-1} [/mm] = [mm] \pmat{\cosh(t) & i\sinh(t) \\ i \sinh(t) & - \cosh(t)}^{-1} [/mm] = [mm] \frac{1}{-\cosh^2(t) + \sinh^2(t)} \cdot \pmat{ -\cosh(t) & -i\sinh(t) \\ -i\sinh(t) & \cosh(t)} [/mm] = [mm] \frac{1}{-1} \cdot \pmat{ -\cosh(t) & -i\sinh(t) \\ -i\sinh(t) & \cosh(t)} [/mm] = [mm] \pmat{ \cosh(t) & i\sinh(t) \\ i\sinh(t) & -\cosh(t)} [/mm] = A = [mm] A^t$.
[/mm]
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:52 Mo 09.05.2005 | Autor: | Olek |
Sehr fein. Abgesehen von dem Missverständnis habe ich das genau so gemacht. Und jetzt kürzt sich da auch kein t mehr weg.
Schönen Dank und gute Nacht,
Olek
|
|
|
|