endl. Gruppen,zyklisch,Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:52 Fr 12.02.2016 | Autor: | sissile |
Aufgabe | Bei dem Satz: "Sei K ein Körper und G eine endliche Untergruppe von [mm] (K^{\*}, [/mm] *). Dann ist G eine zyklische Gruppe." verstehe ich einen Teilschritt des Beweises nicht:
Beweisanfang:
|G| habe Primfaktorzerlegung [mm] |G|=p_1^{\alpha_1}*..*p_n^{\alpha^n} [/mm] (d.h. [mm] p_1,..,p_n [/mm] sind paarweise verschiedene Primzahlen, [mm] \alpha_1,..,\alpha_n \in \mathbb{Z}_{\ge 1}). [/mm] Wir zeigen zunächst: Ist p [mm] \in \{p_1,..,p_n\} [/mm] und P eine p-Sylowgruppe von G, so ist P zyklisch.
Ist [mm] p=p_i [/mm] (für i [mm] \in \{1,..,n\}, [/mm] sobezeichne [mm] \alpha:= \alpha_i, [/mm] d.h. [mm] |P|=p^{\alpha}. [/mm] Wegen dem Struktursatz für endliche abelsche gruppen gibt es Exponenten [mm] \beta_1,..,\beta_k \in \mathbb{Z}_{\ge 1}, \beta_1+..+\beta_k= \alpha [/mm] und (P,*) [mm] \cong (\mathbb{Z}_{p^{\beta_1}}\times..\times \mathbb{Z}_{p^{\beta_k}}, [/mm] +)
ZZ.: k=1
Es ist [mm] max\{ord(a)| a \in P\}=p^{\beta} [/mm] mit [mm] \beta=max\{\beta_1,.,\beta_k\} [/mm] |
Hallo,
Es geht um die Eigenschaft:
> Es ist [mm] max\{ord(a)| a \in P\}=p^{\beta} [/mm] mit [mm] \beta=max\{\beta_1,.,\beta_k\}
[/mm]
Mir ist klar, ord(a) mus [mm] p^{\alpha} [/mm] teilen und ist somit [mm] p^{s} [/mm] mit s [mm] \le \alpha [/mm] aber wie kommt man auf das max der [mm] \beta_i??
[/mm]
LG,
sissi
|
|
|
|
Ich habe das jetzt nicht alles im Einzelnen nachvollzogen, aber
>Es ist $ [mm] max\{ord(a)| a \in P\}=p^{\beta} [/mm] $ mit $ [mm] \beta=max\{\beta_1,.,\beta_k\} [/mm] $
folgt einfach direkt aus
>(P,*) $ [mm] \cong (\mathbb{Z}_{p^{\beta_1}}\times..\times \mathbb{Z}_{p^{\beta_k}}, [/mm] $ +)
Vergiss also einfach mal alles, was du über P weißt, und nimm nur diese Isomorphie, und dann überleg dir, was die maximale Ordnung der Elemente von P ist.
Sei mal [mm] \beta=\beta_r, [/mm] also [mm] \beta_r [/mm] das größte der [mm] \beta's
[/mm]
Dann ist völlig klar, dass es ein Element mit der Ordnung [mm] P^\beta [/mm] gibt, nämlich (in der isomorphen Darstellung als additive Gruppe, dieses Kreuzprodukt der zyklischen Gruppen) einfach das Element, das als r-te Komponente eine 1 hat und sonst nur aus Nullen bsteht. Das Element hat offensichtlich die Ordnung [mm] p^{\beta_r}, [/mm] also [mm] p^\beta.
[/mm]
Das Maximum der Ordnungen ist also mindstens [mm] p^\beta.
[/mm]
Andererseits gilt für jedes Element a von P, dass [mm] a^{p^\beta}=1 [/mm] (in multiplikativer Darstellung), was gleichbedeutend ist mit [mm] p^\beta*a=0 [/mm] in der additiven, isomorphen Darstellung. Die i. Komponente von a ist ja schon 0, wenn man sie nur mit [mm] p^{\beta_i} [/mm] multipliziert, dann also erst recht, wenn man sie mit [mm] p^\beta [/mm] multipliziert. (Denn [mm] p^{\beta}a_i=p^{\beta-\beta_i}p^{\beta_i}a=p^{\beta-\beta_i}*0=0.)
[/mm]
Damit ist die größte auftretende Ordnung also [mm] p^\beta, [/mm] und alle anderen Elemente haben höchstens diese Ordnung.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:47 So 14.02.2016 | Autor: | sissile |
Danke**
LG,
Sissi
|
|
|
|