isomorphie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:12 Do 20.05.2010 | Autor: | math101 |
Aufgabe | Seien m,n>0 zwei ganze Zahlen, sowie g=ggT(m,n) und k=kgV(m,n) ihr größter gemeinsame Teiler und kleinstes gemeinsame Vielfache. Zeigen Sie, dass [mm] C_m\times C_n \cong C_k\times C_g [/mm] gilt. |
Hallo!!
Sitze gerade an der Aufgabe und weiß überhaupt nicht, wie ich dran gehen soll. In der Vorlesung steht, dass zwei Gruppen isomorph sind, wenn es einen bijektiven Gruppenhomomorphismus gibt. Damit kann ich aber auch nicht viel anfangen.
Ich freue mich über jede Hilfe.
Danke im Voraus
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:41 Fr 21.05.2010 | Autor: | Micha |
Hallo!
> Seien m,n>0 zwei ganze Zahlen, sowie g=ggT(m,n) und
> k=kgV(m,n) ihr größter gemeinsame Teiler und kleinstes
> gemeinsame Vielfache. Zeigen Sie, dass [mm]C_m\times C_n \cong C_k\times C_g[/mm]
> gilt.
> Hallo!!
> Sitze gerade an der Aufgabe und weiß überhaupt nicht,
> wie ich dran gehen soll. In der Vorlesung steht, dass zwei
> Gruppen isomorph sind, wenn es einen bijektiven
> Gruppenhomomorphismus gibt. Damit kann ich aber auch nicht
> viel anfangen.
So audm Hut kenn ich die Antwort auch noch nicht, aber die Aufgabe riecht ziemlich stark nach Chinesischem Restsatz. Die Zyklischen gruppen sind ja mit den Restklassenringen isomorph. Also hat man
[mm] C_m \times C_n \cong \IZ / m \times \IZ / n\IZ[/mm]
Wäre der ggT nun 1, dann steht die Behauptung nach chin. Restsatz da:
[mm]\IZ / m \times \IZ / n\IZ \cong \IZ / mn\IZ \cong C_1 \times \IZ / mn \IZ \cong C_1 \times C _{mn}= C_g \times C_k[/mm]
Um nun die Aussage zu erhalten, muss man vllt. eine Abbildung finden, die [mm] $C_g$ [/mm] als Kern hat. Wenn jemand anderes die genaue Lösung hat, kann er sie gern schreiben. Ich überleg noch in wenig.
Gruß Micha
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:19 Fr 21.05.2010 | Autor: | math101 |
Hallo!! Danke für deine Antwort!!
Ich habe mir zu der Aufgabe folgendes überlegt:
In der Vorlesung steht, dass wenn [mm] C_n, C_m [/mm] zyklisch sind, dann ggT(n,m)=1.
Dann ist [mm] kgV(m,n)=\bruch{mn}{ggT(m,n)}=\bruch{mn}{1}=mn. [/mm] Außerdem steht da auch, dass [mm] ord(C_n\times C_m)=mn, [/mm] somit ist auch [mm] ord(C_g\times C_k)=kg. [/mm] Da g=1 und k=mn [mm] \Rightarrow ord(C_n\times C_m)=ord(C_g\times C_k) \Rightarrow C_n\times C_m \cong C_g\times C_k.
[/mm]
Kann ich das so beweisen?
Vielen Dank
Gruß
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:46 Fr 21.05.2010 | Autor: | math101 |
Hallo, Micha!! Danke für deine schnelle Antwort!
Du meintest da, dass man noch vllt. eine Abbildung finden muss, die $ [mm] C_g [/mm] $ als Kern hat. Wenn ggT(m,n)=1, ist das nicht mehr nötig oder?
Vielen Dank!!
gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:26 Fr 21.05.2010 | Autor: | Micha |
Hallo nochmal!
Habe selbst nochmal in mein Skript geschaut. Also dass der ggT=1 ist, gilt nur wenn [mm] $C_m \times C_n$ [/mm] (also das direkte Produkt) ebenfalls zyklisch ist. Das hast du aber nicht also Voraussetzung gegeben. Von daher ist meine letzte Nachricht auf dieser Annahme falsch.
Angenommen es ist g>1. Dann gibt es in [mm] $C_m$ [/mm] eine Untergruppe [mm] $U_1$ [/mm] der Ordnung g und eine Untergruppe [mm] $U_2$ [/mm] der Ordnung m/g. Die Untergruppen und Faktorgruppen von [mm] $C_m$ [/mm] sind ebenfalls zyklisch. Und [mm] $C_m [/mm] / [mm] U_1$ [/mm] sowie [mm] $C_m [/mm] / [mm] U_2$ [/mm] sind abelsch, und damit Normalteiler. Damit kann man [mm] $C_m$ [/mm] zerlegen in ein direktes Produkt:
[mm] C_m = C_g \times C_{m/g}[/mm]
Dann ist das direkte Produkt:
[mm] C_m \times C_n = (C_g \times C_{m/g}) \times C_{n} = C_g \times (C_{m/g}\times C_n)= C_g \times C_{mn /g}= C_g \times C_k[/mm]
Das vorletzte Gleichheitszeichen gilt wegen dem chin. Restsatz, weil nun $m/g$ und n teilerfremd sind.
Gruß Micha
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:30 Fr 21.05.2010 | Autor: | math101 |
Achso!! Ich habe es verstanden!! Vielen-vielen Dank!!
gruß
|
|
|
|
|
Hallo Micha,
mir kommt es so vor, als ob Du behauptest, dass [mm] $C_m \not\cong C_g\times C_\frac{m}{g}$ [/mm] nicht möglich ist. Für beispielsweise $m = 4$ und $g = 2$ ist aber [mm] $C_4 \not\cong C_2\times C_2$.
[/mm]
Habe ich irgendetwas in Deiner Argumentation übersehen?
Gruß mathfunnel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:53 Di 25.05.2010 | Autor: | Micha |
Hallo!
> Hallo Micha,
>
> mir kommt es so vor, als ob Du behauptest, dass [mm]C_m \not\cong C_g\times C_\frac{m}{g}[/mm]
> nicht möglich ist. Für beispielsweise [mm]m = 4[/mm] und [mm]g = 2[/mm] ist
> aber [mm]C_4 \not\cong C_2\times C_2[/mm].
> Habe ich irgendetwas in
> Deiner Argumentation übersehen?
Stimmt du hast recht. Das Problem in meiner Argumentation ist die Zerlegung in das direkte Produkt. Ich hatte behauptet, dass es zwei Untergruppen [mm] $U_1$ [/mm] und $_2$ gibt, die die Ordnungen g und M/g haben und Normalteiler sind. Soweit so richtig. Dann hatte ich behauptet, dass dies schon ausreicht, um eine Zerlegung in ein direktes Produkt zu haben. Dafür brauch man aber noch, dass das Komplexprodukt [mm] $U_1 U_2 [/mm] = [mm] C_m$ [/mm] ist. Da es in [mm] $C_m$ [/mm] ein Element mit Ordnung m gibt, im Komplexprodukt aber nicht, ist die Folgerung nicht unmittelbar richtig. Mittels Fallunterscheidung kann man zwar viele Fäle ausschließen, aber mein Verfahren geht z.B. nicht, wenn man das Beispiel
[mm] $C_{2^3\cdot 3^5 \cdot 5\cdot 7} \times C_{2^5 \cdot 3^3 \cdot 5}$ [/mm] betrachtet, da man auf beiden Seiten die Zerlegung nicht durchführen kann.
Die Aussage folgt aber noch viel direkter aus dem chinesischen Restsatz:
Ist $m = [mm] \produkt_{i\ge1} \, p_i^{m_i}$ [/mm] und $n = [mm] \produkt \, p_i^{n_i}$ [/mm] , dann zerlegen wir mit chin. Restsatz (die Primzahlen sind jeweils die gleichen, kommt sie nicht in der Zerlegung vor, dann setzen wie [mm] $m_i$ [/mm] bzw. [mm] $n_i$ [/mm] gleich 0):
[mm] $C_m [/mm] = [mm] C_{p_1^{m_1}} \times C_{p_2^{m_2}} \times \dots$
[/mm]
[mm] $C_n [/mm] = [mm] C_{p_1^{n_1}} \times C_{p_2^{n_2}} \times \dots$
[/mm]
Setzen wir nun [mm]g_i = \min\{m_i, n_i\}= \begin{cases} m_i, & \mbox{für } m_i \le n_i \\ n_i, & \mbox{sonst} \end{cases}[/mm] und [mm]k_i = \max\{m_i, n_i\}=\begin{cases} m_i, & \mbox{für } m_i > n_i \\ n_i, & \mbox{sonst} \end{cases}[/mm] , so erhalten wir $g [mm] =\produkt_{i\ge1} \, p_i^{g_i} [/mm] = ggT(m,n)$ und [mm] $k=\produkt_{i\ge1} \, p_i^{k_i}=kgV(m,n)$ [/mm] und dann ist nach umordnen:
[mm]C_m \times C_n = (C_{p_1^{m_1}} \times C_{p_2^{m_2}} \times\dots) \times (C_{p_1^{n_1}} \times C_{p_2^{n_2}} \times\dots)= (C_{p_1^{g_1}} \times C_{p_2^{g_2}} \times\dots )\times (C_{p_1^{k_1}} \times C_{p_2^{k_2}}) \times\dots = C_g \times C_k[/mm]
Sorry für die komische Darstellung, wusste es nich anders aufzuschreiben. Man erkennt jetzt nicht aus derDarstellung, dass man keinen Primteiler vergessen oder hinzugefügt hat. Also die Gruppe mit chin. Restsatz in die einselnen Primpotenz-Teiler aufteilen und dann das Produkt ordnen. Da [mm] $\times$ [/mm] assoziativ und kommutativ ist, ist das kein Problem. Die Behauptung folgt damit.
Gruß Micha
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:35 Di 25.05.2010 | Autor: | mathfunnel |
Hallo Micha,
vielen Dank für Deine ausführliche Antwort!
Der Übersichtlichkeit halber könnte man vielleicht zuerst eine Faktorzerlegung [mm] $m=k_1g_1$ [/mm] und [mm] $n=k_2g_2$ [/mm] mit $kgV(m,n) = [mm] k_1k_2, ggT(k_1,k_2) [/mm] = 1, [mm] \ldots$ [/mm] vornehmen.
Gruß mathfunnel
|
|
|
|