komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:15 Mo 12.05.2008 | Autor: | xcase |
Aufgabe | Zeigen Sie, dass für zwei komplexe Zahlen u,v [mm] \varepsilon \IC [/mm]
[mm] |\bruch{u}{v}| [/mm] = [mm] \bruch{|u|}{|v|} [/mm] gilt.
Ich habe diese Frage in keinem anderen Forum gestellt. |
HAllo, :)
alsoooooooooooo
ich habe mir jetzt für u=i und v=-i mal die gleichung angeschaut:
[mm] |\bruch{i}{-i}| [/mm] = [mm] \bruch{|i|}{|-i|}
[/mm]
hab das dann in exponentialform geschrieben:
[mm] |\bruch{e^{\bruch{\pi}{2}}}{e^{\bruch{-\pi}{2}}}| [/mm] = [mm] \bruch{|e^{\bruch{\pi}{2}}|}{|e^{\bruch{-\pi}{2}}|}
[/mm]
so dann hab ich die winkel nochmal anders geschrieben:
[mm] |\bruch{e^{\bruch{\pi}{2}}}{e^{\bruch{3\pi}{2}}}| [/mm] = [mm] \bruch{|e^{\bruch{\pi}{2}}|}{|e^{\bruch{3\pi}{2}}|}
[/mm]
ICh weiss jetzt auch nicht wie ich weiter machen soll...ich meine es ist ja ziemlich egal wo man die betragsstriche hinsetzt da ja e sowieso nicht negativ sein kann.
Bitte um Hilfe. :))
MfG T-O-M-I
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:27 Mo 12.05.2008 | Autor: | Loddar |
Hallo xcase!
Ersetze mal jeweils $u \ :=\ x+i*y$ sowie $v \ = \ a+i*b$ und berechne die einzelnen Ausdrücke und Beträge.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:11 Mo 12.05.2008 | Autor: | xcase |
also ich hab jetzt die rechte Seite so geschrieben:
[mm] \bruch{|x+iy|}{|a+ib|} [/mm] = [mm] \bruch{\wurzel{x^{2}+y^{2}}}{\wurzel{a^{2}+b^{2}}}
[/mm]
Und den linken Term muss ich ja erst komplex konjugiert erweitern damit das i im Nenner verschwindet, damit ich umformen kann und am Ende auch den Betrag ziehen kann..Nur wenn ich so weit rechne dann bekomme ich einen endlosen langen term im Zähler den ich nicht so recht zusammenfassen kann.
MfG T-O-M-I
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:16 Mo 12.05.2008 | Autor: | Vreni |
Könntest du deine Rechenschritte und den Term, den du rausbekommst mal posten, dann können wir dir auch weiterhelfen oder evtl. Fehler finden?
An sich müsste das nämlich der richtige Weg sein.
Gruß,
Vreni
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:31 Mo 12.05.2008 | Autor: | xcase |
sry^^
also ich bekomme für [mm] |\bruch{x+iy}{a+ib}| [/mm] = [mm] |\bruch{xa+by}{a^{2}+b^{2}}+\bruch{(ay-xb)i}{a^{2}+b^{2}}|
[/mm]
Und wenn ich jetzt den Betrag nehme dann bekomme ich im Zähler: [mm] x^{2}a^{2}+2xyab+b^{2}y^{2}+a^{2}y^{2}-2abxy+x^{2}b^{2} [/mm] .
Viel zusammenfassen geht da aber nicht oder.
Vor allem wenn ich [mm] a^{2}+b^{2} [/mm] zum quadrat nehme und davon die wurzel ziehe kommt ja das selbe wieder heraus.....aber beim anderen therm(siehe weiter oben) kommt [mm] \wurzel{a^{2}+b^{2}} [/mm] raus.
entweder hab ich mich verrechnet oder....keine ahnung.
MfG T-O-M-I
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:55 Mo 12.05.2008 | Autor: | Vreni |
> sry^^
> also ich bekomme für [mm]|\bruch{x+iy}{a+ib}|[/mm] =
> [mm]|\bruch{xa+by}{a^{2}+b^{2}}+\bruch{(ay-xb)i}{a^{2}+b^{2}}|[/mm]
>
> Und wenn ich jetzt den Betrag nehme dann bekomme ich im
> Zähler:
> [mm]x^{2}a^{2}+2xyab+b^{2}y^{2}+a^{2}y^{2}-2abxy+x^{2}b^{2}[/mm] .
> Viel zusammenfassen geht da aber nicht oder.
Doch, z.B. ist 2xyab-2abxy=0
und den Rest kannst du zusammenfassen zu [mm] x^{2}a^{2}+x^{2}b^{2}+b^{2}y^{2}+a^{2}y^{2} [/mm] = [mm] x^{2}(a^{2}+b^{2}) +y^{2}(a^{2}+b^{2})=(x^{2}+y^{2})(a^{2}+b^{2})
[/mm]
Kommst du jetzt weiter?
> Vor allem wenn ich [mm]a^{2}+b^{2}[/mm] zum quadrat nehme und davon
> die wurzel ziehe kommt ja das selbe wieder heraus.....aber
> beim anderen therm(siehe weiter oben) kommt
> [mm]\wurzel{a^{2}+b^{2}}[/mm] raus.
> entweder hab ich mich verrechnet oder....keine ahnung.
> MfG T-O-M-I
Gruß,
Vreni
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:59 Sa 17.05.2008 | Autor: | xcase |
jo danke sry aber ich war ein wenig blind^^
MfG T-O-M-I
|
|
|
|