kontrahier. Abb. & metr. Raum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei (X,d) ein vollständiger metrischer Raum und T: X [mm] \to [/mm] X eine kontrahierende Abbildung, d.h. es gibt ein c mit 0 [mm] \le [/mm] c < 1 und
d(T(x), T(y)) [mm] \le [/mm] c* d(x,y) für alle x,y [mm] \in [/mm] X.
Man zeige, dass es dann genau ein x [mm] \in [/mm] X mit T(x) = x gibt und dass für ein beliebiges [mm] x_0 \in [/mm] X die Fehlerabschätzung
[mm] d(x_k [/mm] , x) [mm] \le \bruch{c^k}{1-c} d(x_0, T(x_0))
[/mm]
gilt, wobei [mm] x_k [/mm] sukzessive durch [mm] x_k [/mm] = [mm] T(x_{k-1}), k\ge [/mm] 1, zu bestimmen ist.
Hinweis: Man zeige, dass die Folge [mm] (x_n)_{n \in \IN} [/mm] für beliebiges [mm] x_0 \in [/mm] X konvergiert und dass der Grenzwert das gesuchte x ist. |
Hallihallo!
Ich hab mal wieder Probleme mit dem aktuellen Übungsblatt.
Bei der Aufgabe weiß ich nicht so genau, wo ich überhaupt starten soll und was ich als gegeben betrachten soll bzw. was ich eigentlich zeigen soll...
Ich habe mir überlegt, dass ich wohl diese Fehlerabschätzung beweisen soll. Dazu habe ich ein [mm] x\in [/mm] X mit T(x)=x fest und [mm] x_0 \in [/mm] X beliebig gewählt:
Dann gilt ja [mm] d(T(x),T(x_0)) [/mm] = d(x, [mm] T(x_0))
[/mm]
Allerdings spielt ja auch noch das [mm] x_k [/mm] mit [mm] x_k [/mm] = [mm] T(x_{k-1}) [/mm] eine Rolle. Vielleicht sollte man auch das lieber betrachten?
Da komme ich aber auch nicht weiter.
Außerdem weiß ich auch nicht, was es mit dem Hinweis auf sich hat. Was hat das ganze mit dem Grenzwert der Folge [mm] (x_n) [/mm] zu tun???
Ich wäre dankbar, wenn mir jemand helfen könnte, weil ich mal wieder, wie so oft nicht weiterkomme...
Lg Kiki
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:24 Mi 22.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|