konvergenz von n^-s < Analysis < Hochschule < Mathe < Vorhilfe
|
hallo leute,
ich soll zeigen für welche s [mm] \in \IN [/mm] die summe [mm] n^{-s} [/mm] konvergiert.
ich habe einen beweis gefunden, aber der ist mit integralen und das darf ich noch nicht.
klar ist, dass die summe [mm] n^{-1} [/mm] divergiert, weil ja harmonische reihe, ich weiß auch, dass ab [mm] n^{-2} [/mm] alles konvergiert, nur wie zeigen? keinen schimmer habe ich wie ich das zeigen soll, wie gesagt integrale darf ich nicht und dass für [mm] n^{-2} [/mm] konvergiert, wie zeigen? mit den kriterien? wurzelkriterium und so??
please please please help....
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:53 Mi 24.11.2004 | Autor: | Marcel |
Hallo,
das kannst du beispielsweise so machen:
1.) Zeige: [m]\summe_{n=1}^\infty\frac{1}{n(n+1)}[/m] ist konvergent!
2.) Dann gilt für alle $s [mm] \ge [/mm] 2$, $s [mm] \in \IN$:
[/mm]
[m]\summe_{n=1}^k{\frac{1}{n^s}}\le\summe_{n=1}^k{\frac{1}{n^2}}\le\summe_{n=1}^k{\frac{1}{n(n+1)}}\le\summe_{n=1}^\infty{\frac{1}{n(n+1)}}[/m]
für jedes $k [mm] \in \IN$.
[/mm]
Damit ist die Partialsummenfolge [m]\left(\summe_{n=1}^k{\frac{1}{n^s}}\right)_{k \in \IN}[/m] für jedes $s [mm] \in \IN$, [/mm] $s [mm] \ge [/mm] 2$ monoton wachsend und nach oben beschränkt, also konvergent. Daraus folgt die Behauptung.
Alternativ kann man die Behauptung auch aus dem Cauchyschen Verdichtungssatz (+geometrische Reihe) folgern .
Viele Grüße,
Marcel
|
|
|
|