lokale Eigenschaften < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:16 Sa 27.06.2009 | Autor: | hopsie |
Aufgabe | Sei [mm] \Phi [/mm] :M [mm] \to [/mm] N A-linear. Dann gilt:
[mm] \Phi [/mm] ist injektiv [mm] \gdw \Phi_{P} :M_{P} \to N_{P} [/mm] ist injektiv [mm] \forall [/mm] P Primideal |
Hallo!
Also die eine Richtung [mm] ("\Rightarrow") [/mm] habe ich denk ich gelöst. Bei der anderen Richtung komme ich nicht weiter:
Sei also [mm] \Phi_{P} :M_{P} \to [/mm] N{P} injektiv [mm] \forall [/mm] P Primideal. D.h.
[mm] \Phi_{P}( \bruch{m_{1}}{s_{1}}) [/mm] = [mm] \Phi_{P}( \bruch{m_{2}}{s_{2}}) \Rightarrow \bruch{m_{1}}{s_{1}} [/mm] = [mm] \bruch{m_{2}}{s_{2}}.
[/mm]
Sei [mm] \Phi (m_{1}) [/mm] = [mm] \Phi (m_{2}) \Rightarrow \bruch{\Phi (m_{1})}{1} [/mm] = [mm] \bruch{\Phi (m_{2})}{1} \gdw \Phi_{P}(\bruch{m_{1}}{1}) [/mm] = [mm] \Phi_{P}(\bruch{m_{1}}{1}) \Rightarrow \bruch{m_{1}}{1} [/mm] = [mm] \bruch{m_{2}}{1} [/mm] (da [mm] \Phi_{P} [/mm] injektiv)
[mm] \Rightarrow t(m_{1} [/mm] - [mm] m_{2}) [/mm] = 0 für ein t [mm] \in [/mm] A [mm] \backslash [/mm] P .
Und hier hänge ich... Ich weiß, dass insebsondere t [mm] \not= [/mm] 0 ist, aber wie kann ich daraus jetzt schließen, dass [mm] m_{1} [/mm] = [mm] m_{2} [/mm] ist?
Vielen Dank schonmal!
Grüße, hopsie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:40 Mi 01.07.2009 | Autor: | felixf |
Hallo hopsie!
> Sei [mm]\Phi[/mm] :M [mm]\to[/mm] N A-linear. Dann gilt:
> [mm]\Phi[/mm] ist injektiv [mm]\gdw \Phi_{P} :M_{P} \to N_{P}[/mm] ist
> injektiv [mm]\forall[/mm] P Primideal
Ich wuerde diese Aufgabe auch etwas abstrakter angehen: zeige [mm] $(\ker \Phi)_P [/mm] = [mm] \ker (\Phi_P)$. [/mm] Daraus folgt: [mm] $\Phi$ [/mm] injektiv [mm] $\Leftrightarrow \ker \Phi [/mm] = 0 [mm] \Leftrightarrow \forall [/mm] P : [mm] (\ker \Phi)_P [/mm] = 0 [mm] \Leftrightarrow \forall [/mm] P : [mm] \ker \Phi_P [/mm] = 0 [mm] \Leftrightarrow \forall [/mm] P : [mm] \Phi_P$ [/mm] injektiv. (Vorausgesetzt ihr hattet die Aequivalenz $M = 0 [mm] \Leftrightarrow \forall [/mm] P : [mm] M_P [/mm] = 0$.)
> Also die eine Richtung [mm]("\Rightarrow")[/mm] habe ich denk ich
> gelöst. Bei der anderen Richtung komme ich nicht weiter:
>
> Sei also [mm]\Phi_{P} :M_{P} \to[/mm] N{P} injektiv [mm]\forall[/mm] P
> Primideal. D.h.
>
> [mm]\Phi_{P}( \bruch{m_{1}}{s_{1}})[/mm] = [mm]\Phi_{P}( \bruch{m_{2}}{s_{2}}) \Rightarrow \bruch{m_{1}}{s_{1}}[/mm]
> = [mm]\bruch{m_{2}}{s_{2}}.[/mm]
>
> Sei [mm]\Phi (m_{1})[/mm] = [mm]\Phi (m_{2}) \Rightarrow \bruch{\Phi (m_{1})}{1}[/mm]
> = [mm]\bruch{\Phi (m_{2})}{1} \gdw \Phi_{P}(\bruch{m_{1}}{1})[/mm] =
> [mm]\Phi_{P}(\bruch{m_{1}}{1}) \Rightarrow \bruch{m_{1}}{1}[/mm] =
> [mm]\bruch{m_{2}}{1}[/mm] (da [mm]\Phi_{P}[/mm] injektiv)
> [mm]\Rightarrow t(m_{1}[/mm] - [mm]m_{2})[/mm] = 0 für ein t [mm]\in[/mm] A
> [mm]\backslash[/mm] P .
> Und hier hänge ich... Ich weiß, dass insebsondere t
> [mm]\not=[/mm] 0 ist, aber wie kann ich daraus jetzt schließen,
> dass [mm]m_{1}[/mm] = [mm]m_{2}[/mm] ist?
Mach's doch erstmal leichter, nimm nicht zwei Elemente sondern eins aus dem Kern von [mm] $\Phi$ [/mm] und zeige dass es 0 sein muss. Daraus folgt ja, dass [mm] $\Phi$ [/mm] injektiv ist. (Damit sparst du dir schonmal ein $m$.)
Und jetzt hast du genau das gleiche wie vorher: du weisst, dass [mm] $\frac{m}{1} [/mm] = 0$ ist in jeder Lokalisierung [mm] $M_P$. [/mm] Du musst dann zeigen, dass $m = 0$ ist in $M$. Dazu zeige doch die Kontsruktion: nimm an $m [mm] \neq [/mm] 0$ in $M$ und konstruiere ein $P$ mit [mm] $\frac{m}{1} \neq [/mm] 0$ in [mm] $M_P$.
[/mm]
Dazu wieder die gleiche Frage: was fuer Methoden zur Konstruktion von Primidealen kennt ihr?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Do 02.07.2009 | Autor: | hopsie |
> Hallo hopsie!
>
> > Sei [mm]\Phi[/mm] :M [mm]\to[/mm] N A-linear. Dann gilt:
> > [mm]\Phi[/mm] ist injektiv [mm]\gdw \Phi_{P} :M_{P} \to N_{P}[/mm] ist
> > injektiv [mm]\forall[/mm] P Primideal
>
> Ich wuerde diese Aufgabe auch etwas abstrakter angehen:
> zeige [mm](\ker \Phi)_P = \ker (\Phi_P)[/mm].
Hab ich versucht, ich läng auch hier an der selben Stelle wie beim Beweis unten...
Daraus folgt: [mm]\Phi[/mm]
> injektiv [mm]\Leftrightarrow \ker \Phi = 0 \Leftrightarrow \forall P : (\ker \Phi)_P = 0 \Leftrightarrow \forall P : \ker \Phi_P = 0 \Leftrightarrow \forall P : \Phi_P[/mm]
> injektiv. (Vorausgesetzt ihr hattet die Aequivalenz [mm]M = 0 \Leftrightarrow \forall P : M_P = 0[/mm].)
>
>
> Mach's doch erstmal leichter, nimm nicht zwei Elemente
> sondern eins aus dem Kern von [mm]\Phi[/mm] und zeige dass es 0 sein
> muss. Daraus folgt ja, dass [mm]\Phi[/mm] injektiv ist. (Damit
> sparst du dir schonmal ein [mm]m[/mm].)
>
> Und jetzt hast du genau das gleiche wie vorher: du weisst,
> dass [mm]\frac{m}{1} = 0[/mm] ist in jeder Lokalisierung [mm]M_P[/mm]. Du
> musst dann zeigen, dass [mm]m = 0[/mm] ist in [mm]M[/mm]. Dazu zeige doch die
> Kontsruktion: nimm an [mm]m \neq 0[/mm] in [mm]M[/mm] und konstruiere ein [mm]P[/mm]
> mit [mm]\frac{m}{1} \neq 0[/mm] in [mm]M_P[/mm].
> Dazu wieder die gleiche Frage: was fuer Methoden zur
> Konstruktion von Primidealen kennt ihr?
Ok... Also ich weiß, das [mm] M_{P} [/mm] ein lokaler Ring ist, d.h. es existiert nur ein maximales Ideal. Da der Kern immer Ideal ist, ist der Kern das maximale Ideal. Da [mm] M_{P} [/mm] lokal, liegen alle Nicht-Einheiten in einem maximalen Ideal... Mh. Ja Konstruktionen sind das nicht wirklich... Hilft mir das trotzdem vielleicht weiter?...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:14 Do 02.07.2009 | Autor: | felixf |
Hallo!
> > Hallo hopsie!
> >
> > > Sei [mm]\Phi[/mm] :M [mm]\to[/mm] N A-linear. Dann gilt:
> > > [mm]\Phi[/mm] ist injektiv [mm]\gdw \Phi_{P} :M_{P} \to N_{P}[/mm] ist
> > > injektiv [mm]\forall[/mm] P Primideal
> >
> > Ich wuerde diese Aufgabe auch etwas abstrakter angehen:
> > zeige [mm](\ker \Phi)_P = \ker (\Phi_P)[/mm].
>
> Hab ich versucht, ich läng auch hier an der selben Stelle
> wie beim Beweis unten...
Dann mal direkt dorthin:
> > Und jetzt hast du genau das gleiche wie vorher: du weisst,
> > dass [mm]\frac{m}{1} = 0[/mm] ist in jeder Lokalisierung [mm]M_P[/mm]. Du
> > musst dann zeigen, dass [mm]m = 0[/mm] ist in [mm]M[/mm]. Dazu zeige doch die
> > Kontsruktion: nimm an [mm]m \neq 0[/mm] in [mm]M[/mm] und konstruiere ein [mm]P[/mm]
> > mit [mm]\frac{m}{1} \neq 0[/mm] in [mm]M_P[/mm].
>
> > Dazu wieder die gleiche Frage: was fuer Methoden zur
> > Konstruktion von Primidealen kennt ihr?
>
> Ok... Also ich weiß, das [mm]M_{P}[/mm] ein lokaler Ring ist, d.h.
> es existiert nur ein maximales Ideal. Da der Kern immer
> Ideal ist, ist der Kern das maximale Ideal. Da [mm]M_{P}[/mm] lokal,
> liegen alle Nicht-Einheiten in einem maximalen Ideal... Mh.
> Ja Konstruktionen sind das nicht wirklich... Hilft mir das
> trotzdem vielleicht weiter?...
Nein, das hilft dir nicht weiter.
Schau dir mal zu $m [mm] \in [/mm] M$, $m [mm] \neq [/mm] 0$ das Ideal [mm] $\mathfrak{a} [/mm] = [mm] \{ a \in A \mid a m = 0 \}$ [/mm] an. Dies ist ein echtes Ideal (warum?), womit es in einen maximalen Ideal $P$ enthalten ist.
Kann jetzt [mm] $\frac{m}{1} [/mm] = 0$ sein in [mm] $M_P$?
[/mm]
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:20 Fr 03.07.2009 | Autor: | hopsie |
Hallo! :)
Danke!! Ich hab's endlich geschnallt!
> Schau dir mal zu [mm]m \in M[/mm], [mm]m \neq 0[/mm] das Ideal [mm]\mathfrak{a} = \{ a \in A \mid a m = 0 \}[/mm]
> an. Dies ist ein echtes Ideal (warum?), womit es in einen
> maximalen Ideal [mm]P[/mm] enthalten ist.
>
> Kann jetzt [mm]\frac{m}{1} = 0[/mm] sein in [mm]M_P[/mm]?
>
Also: Sei $ [mm] \Phi [/mm] : M [mm] \to [/mm] N $ A-linear, $ [mm] \Phi_{P}:M_{P} \to N_{P} [/mm] $ injektiv $ [mm] \forall [/mm] P $ Primideal.
Sei $ 0 [mm] \not= [/mm] m [mm] \in [/mm] ker [mm] \Phi [/mm] $. Betrachte $ [mm] \mathfrak{a} [/mm] = [mm] \{a \in A \ |\ am = 0 \} [/mm] $.
$ [mm] \mathfrak{a} [/mm] $ ist ein Ideal denn:
(i) Sei $ a,b [mm] \in \mathfrak{a} [/mm] $ , d.h. $ am = bm = 0 [mm] \Rightarrow [/mm] (a-b)m = am-bm = 0-0 = 0 $, d.h. $ a-b [mm] \in \mathfrak{a} [/mm] $
$ [mm] \Rightarrow \mathfrak{a} [/mm] $ Untergruppe bzgl +.
(ii) Sei $ a [mm] \in \mathfrak{a} [/mm] $, d.h. $ am = 0 $, sei $ s [mm] \in [/mm] A [mm] \Righarrow [/mm] (sa)m = s(am) = s*0=0 $, d.h. $ as [mm] \in \mathfrak{a} [/mm] $
$ [mm] \Rightarrow \mathfrak{a} [/mm] $ Ideal.
Da jedes Ideal in einem maximalen enthalten ist, und jedes maximale ein Primideal ist, $ [mm] \exists [/mm] P' $ Primideal mit $ [mm] \mathfrak{a}\subseteq [/mm] P' $.
Betrachte nun $ [mm] M_{P'} [/mm] $. Da nach Voraussetzung $ 0 [mm] \not= [/mm] m [mm] \in ker\Phi [/mm] $ gilt:
$ [mm] \Phi_{P'} \left( \bruch{m}{1} \right) [/mm] = [mm] \bruch{\Phi (m)}{1} [/mm] = [mm] \bruch{0}{1} \Rightarrow [/mm] $ da $ [mm] \Phi_{P'} [/mm] $ injektiv $ [mm] \bruch{m}{1} [/mm] = [mm] \bruch{0}{1} [/mm] $, d.h. $ [mm] \exists [/mm] v [mm] \in A\setminus [/mm] P' : mv = 0 $.
Angenommen $ m [mm] \not= [/mm] 0 [mm] \Rightarrow [/mm] v [mm] \in \mathfrak{a} \subseteq [/mm] P' $ Widerspruch, da $ v [mm] \not\in [/mm] P'. [mm] \Rightarrow [/mm] m = 0 $.
[mm] \Rightarrow ker\Phi [/mm] = 0, d.h. f injektiv.
Vielen Dank für deine Hilfe!
Gibt's denn da nen Trick, wie man auf den Lösungsweg kommt, oder ist das einfach Erfahrung?
LG, hopsie
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:49 Fr 03.07.2009 | Autor: | felixf |
Hallo!
> Hallo! :)
> Danke!! Ich hab's endlich geschnallt!
Super! :)
> > Schau dir mal zu [mm]m \in M[/mm], [mm]m \neq 0[/mm] das Ideal [mm]\mathfrak{a} = \{ a \in A \mid a m = 0 \}[/mm]
> > an. Dies ist ein echtes Ideal (warum?), womit es in einen
> > maximalen Ideal [mm]P[/mm] enthalten ist.
> >
> > Kann jetzt [mm]\frac{m}{1} = 0[/mm] sein in [mm]M_P[/mm]?
>
> Also: Sei [mm]\Phi : M \to N[/mm] A-linear, [mm]\Phi_{P}:M_{P} \to N_{P}[/mm]
> injektiv [mm]\forall P[/mm] Primideal.
> Sei [mm]0 \not= m \in ker \Phi [/mm]. Betrachte [mm]\mathfrak{a} = \{a \in A \ |\ am = 0 \} [/mm].
Das $0 [mm] \neq [/mm] m$ solltest du weglassen. Ansonsten macht es unten keinen Sinn ploetzlich ``Angenommen $0 [mm] \neq [/mm] m$'' zu schreiben.
> [mm]\mathfrak{a}[/mm] ist ein Ideal denn:
>
> (i) Sei [mm]a,b \in \mathfrak{a}[/mm] , d.h. [mm]am = bm = 0 \Rightarrow (a-b)m = am-bm = 0-0 = 0 [/mm],
> d.h. [mm]a-b \in \mathfrak{a}[/mm]
>
> [mm]\Rightarrow \mathfrak{a}[/mm] Untergruppe bzgl +.
> (ii) Sei [mm]a \in \mathfrak{a} [/mm], d.h. [mm]am = 0 [/mm], sei [mm]s \in A \Righarrow (sa)m = s(am) = s*0=0 [/mm],
> d.h. [mm]as \in \mathfrak{a}[/mm]
> [mm]\Rightarrow \mathfrak{a}[/mm] Ideal.
Dieses Ideal hat uebrigens einen Namen: es ist der Annihilator von $m$, bzw. von dem Untermodul $A m$.
> Da jedes Ideal in einem maximalen enthalten ist, und jedes
> maximale ein Primideal ist, [mm]\exists P'[/mm] Primideal mit
> [mm]\mathfrak{a}\subseteq P' [/mm].
Du solltest hier noch erwaehnen, dass [mm] $\mathfrak{a} \subsetneqq [/mm] A$ ist, z.B. weil $1 [mm] \not\in \mathfrak{a}$ [/mm] da $m [mm] \neq [/mm] 0$.
> Betrachte nun [mm]M_{P'} [/mm]. Da nach Voraussetzung [mm]0 \not= m \in ker\Phi[/mm]
> gilt:
> [mm]\Phi_{P'} \left( \bruch{m}{1} \right) = \bruch{\Phi (m)}{1} = \bruch{0}{1} \Rightarrow[/mm]
> da [mm]\Phi_{P'}[/mm] injektiv [mm]\bruch{m}{1} = \bruch{0}{1} [/mm], d.h.
> [mm]\exists v \in A\setminus P' : mv = 0 [/mm].
> Angenommen [mm]m \not= 0 \Rightarrow v \in \mathfrak{a} \subseteq P'[/mm]
> Widerspruch, da [mm]v \not\in P'. \Rightarrow m = 0 [/mm].
Genau.
> [mm]\Rightarrow ker\Phi[/mm] = 0, d.h. f injektiv.
Ja.
> Gibt's denn da nen Trick, wie man auf den Lösungsweg
> kommt, oder ist das einfach Erfahrung?
Das ist schon etwas Erfahrung
Man kann allerdings auch so drauf kommen (mit genug Ueberlegen): ich hatte ja zwei Methoden erwaehnt, mit denen man Primideale erzeugen kann. Die zweite Methode (Vermeidung einer multiplikativen Teilmenge die $0$ nicht enthaelt) funktioniert hier nicht wirklich, denn wo soll die Teilmenge herkommen. Die andere Methode ist halt ein maximales Ideal zu nehmen, was ein Ideal umfasst -- aber wo kommt ein Ideal her? Eine Moeglichkeit ist halt den Annihilator zu nehmen -- bzw. sich selber zu ueberlegen dass dieser ein Ideal ist und man dieses nutzen koennte. Offensichtlich ist es zumindest nicht, insbesondere wenn man ihn gar nicht kennt.
LG Felix
|
|
|
|