lokale Lipschitzstetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:16 Sa 01.10.2011 | Autor: | kushkush |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Sei $f=(f_{1},...,f_{n})^{T} : G\rightarrow \IR^{n}$ eine Abbildung $(x_{0},z_{0}) \in G \subset \IR \times \IR^{n} , G $ offen. f heisst lokal Lipschitzstetig bei $(x_{0},z_{0})$ bezüglich der z-Variablen, falls es eine Kugel $B_{\epsilon(x_{0},z_{0})$ gibt, so dass gilt :
$ ||f(x,z)-f(x,\hat{z}||_{2} \le L||z-\hat{z}||_{2} \ \ \forall (x,z),(x,\hat{z}) \ \in B_{\epsilon}(x_{0},z_{0})$
Zeigen Sie, dass f lokal Lipschitzstetig bei $(x_{0},z_{0})$ bezüglich der z-Variablen ist, falls alle partiellen Ableitungen $\partial _{zj}f_{i},i,j=1,...n$ in einer Kugel $B_{\delta}(x_{0},z_{0})$ existieren und stetig sind. |
Hallo,
der Mittelwertsatz von Lagrange in $\IR^{n}$ : Sei $U\subset \IR^{n}$ eine offene Menge. Sei $F:U\rightarrow \IR$ eine differenzierbare Funktion. Sei das Segment $[\vec{x},\vec{y}]$ in U, dann $\exists \ \xi \in [\vec{x},\vec{y}]$ so dass :
(0) $F(\vec{x})-F(\vec{y}) = DF(\xi)(\vec{x}-\vec{y})$
Man hat hier:
(1) $DF(\xi)(\vec{x}-\vec{y}) = \big( \frac{\partial F}{\partial z_{1}}(\xi), \frac{\partial F}{\partial z_{2}},..., \frac{\partial F}{\partial z_{n} } (\xi\big)$
wählt man ein $\epsilon $ so dass $\epsilon< \delta$. Für ein bestimmtes $x\in \IR$ mit $|x-x_{0}| < \epsilon$ sei $H(z) := f(x,z) \ \forall z\in \IR^{n}$ und $H= (h_{1},...,h_{n})$. Dann sind nach Voraussetzung alle partiellen Ableitungen $\partial z_{j}h_{i}, \ \ \ i,j=1,...,n$ in der geschlossenen Kugel $B_{\epsilon}[x_{0},z_{0}]$ stetig. Also $\exists M > 0$ so dass:
(2): $\big| \frac{\partial h_{i}}{\partial z_{j}}(z) \big| < M \ \ i,j=1,...,n \ \ \ forall z$ so dass $(x,z) \in B_{\epsilon}(x_{0},z_{0})$
Mit (0),(1) und (2) ist also für : $i=1,...,n : \ \exists \xi $ so dass
$||f(x,z)-f(x,\hat{z}) ||_{2} = f'(\xi)||z-\hat{z}||_{2} \le M ||z-\hat{z}||_{2} \ \forall (x,z),(x,\hat{z}) \in B_{\epsilon}(x_{0},z_{0})$
Ist das so OK?
Bin für jegliche Hilfestellung sehr dankbar!!
Gruss
kushkush
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:04 Mo 03.10.2011 | Autor: | Blech |
Hi,
die grundsätzliche Argumentation ist richtig. Aber Du solltest Dir nochmal klar machen, wo was eine Zahl, ein Vektor oder eine Matrix ist.
$ [mm] F(\vec{x})-F(\vec{y}) [/mm] = [mm] DF(\xi)(\vec{x}-\vec{y}) [/mm] $
gilt für [mm] $\IR$ [/mm] wertige F, wir machen es hier also für jedes [mm] $f_i$. [/mm] Nur können da ja verschiedene [mm] $\xi$ [/mm] für die verschiedenen i auftauchen, was dann?
Oder,
$ [mm] \big| \frac{\partial h_{i}}{\partial z_{j}}(z) \big| [/mm] < M \ \ i,j=1,...,n \ \ \ forall z $ so dass $ (x,z) [mm] \in B_{\epsilon}(x_{0},z_{0}) [/mm] $
hier taucht zum Schluß plötzlich ein x aus dem Nichts auf, das vorher schonmal hätte erwähnt werden sollen, aber ich weiß nicht, ob das bei dem [mm] $\forall$ [/mm] irgendwo noch drin stand und das einfach 2 Schreibfehler waren, oder nicht.
Du könntest die Aufgabe einfach durchgehend komponentenweise betrachten,
[mm] $\| f_i(x,z)-f_i(x,\hat z)\|\leq M_i \| z-\hat z\|,\quad \forall [/mm] (x,z), [mm] (x,\hat z)\in B_\epsilon(x_0,z_0)$
[/mm]
Und dann daraus folgern, daß es auch ein M geben muß, das für [mm] (f_1,\ldots, f_n) [/mm] gilt.
Dann noch etwas sauberer das Ganze und es paßt. =)
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:21 Mo 03.10.2011 | Autor: | kushkush |
Hallo Stefan,
vielen Dank!
Gruss
kushkush
|
|
|
|