orthog. Endomorphismen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:51 Mi 23.05.2012 | Autor: | huzein |
Aufgabe | Sei $V$ ein $n$-dimensionaler euklidischer VR, [mm] $\rho\in\operatorname{End}(V)$ [/mm] orthogonal. Zeigen Sie: [mm] $(\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}$ [/mm] hat eine gerade Dimension und ist eine orthogonale Summe zweidimensionaler [mm] $\rho$-invarianter [/mm] Unterräume. |
Hallo,
hab obige Aufgabe zu lösen und brauch hier ebenfalls einen Tip. Zunächst mal weiß ich ja dass [mm] $\rho$ [/mm] orthogonal ist. Da $V$ euklidisch ist, sind die EW reell und lauten -1 und 1. Aber damit bin ich auch schon am Ende meines Ansatzes... und hoffe dass mir hier jmd auch eine Starthilfe geben kann...
Gruß
(hab diese Frage in keinem anderen Forum gestellt)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:08 Mi 23.05.2012 | Autor: | fred97 |
> Sei [mm]V[/mm] ein [mm]n[/mm]-dimensionaler euklidischer VR,
> [mm]\rho\in\operatorname{End}(V)[/mm] orthogonal. Zeigen Sie:
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}[/mm]
> hat eine gerade Dimension und ist eine orthogonale Summe
> zweidimensionaler [mm]\rho[/mm]-invarianter Unterräume.
> Hallo,
>
> hab obige Aufgabe zu lösen und brauch hier ebenfalls einen
> Tip. Zunächst mal weiß ich ja dass [mm]\rho[/mm] orthogonal ist.
> Da [mm]V[/mm] euklidisch ist, sind die EW reell und lauten -1 und 1.
Nein, das sind mögliche Eigenwerte von [mm] \rho.
[/mm]
Ist z.B. [mm] \rho= id_V, [/mm] so ist [mm] Eig(\rho,1)=V [/mm] und [mm] Eig(\rho,-1)= \{0\}
[/mm]
Lautet die Aufgabe wirklich so, dass Du diese Dinge für
$ [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} [/mm] $ zeigen sollst.
Im Falle [mm] \rho= id_V [/mm] ist nämlich $ [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} [/mm] = [mm] \{0\}$
[/mm]
FRED
> Aber damit bin ich auch schon am Ende meines Ansatzes...
> und hoffe dass mir hier jmd auch eine Starthilfe geben
> kann...
>
> Gruß
>
> (hab diese Frage in keinem anderen Forum gestellt)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:16 Mi 23.05.2012 | Autor: | huzein |
>
> Nein, das sind mögliche Eigenwerte von [mm]\rho.[/mm]
>
> Ist z.B. [mm]\rho= id_V,[/mm] so ist [mm]Eig(\rho,1)=V[/mm] und [mm]Eig(\rho,-1)= \{0\}[/mm]
>
Ja sofort nachdem ich die Anfrage gesendet habe, ist mir das auch in den Sinn gekommen, dass das nur die möglichen EW sind.
> Lautet die Aufgabe wirklich so, dass Du diese Dinge für
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}[/mm]
> zeigen sollst.
>
> Im Falle [mm]\rho= id_V[/mm] ist nämlich
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} = \{0\}[/mm]
>
> FRED
Das bereitet mir nämlich auch Kopfschmerzen, denn die Aufgabe lautet wirklich so. Und angenommen 1 und -1 sind EW, dann hab ich ja mit [mm] v_1,...v_k\in\operatorname{Eig}(\rho,1) [/mm] orthonormale Basisvektoren von [mm] \operatorname{Eig}(\rho,1) [/mm] und mit [mm] w_1,...,w_l\in\operatorname{Eig}(\rho,-1) [/mm] eine ONB von [mm] \operatorname{Eig}(\rho,1), [/mm] und deshalb doch mit [mm] (v_1,...,v_k,w_1,...,w_l) [/mm] (k+l=n) eine ONB von V, denn [mm] v_i\perp w_j [/mm] und innerhalb der Eigenräume ja auch und weil orthog. End. / Matrizen diagonalisierbar sind. Dann wäre doch immer [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^\perp=\{0\}, [/mm] wegen [mm] \operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,1)=V, [/mm] oder nicht?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:45 Do 24.05.2012 | Autor: | hippias |
Vermutlich ist die direkte Summe im Fall [mm] $Eig(\rho,1)\oplus Eig(\rho [/mm] ,-1)= V$ als leer anzusehen.
Ueberlege, Dir, dass $U:= [mm] (Eig(\rho,1)\oplus Eig(\rho ,-1))^{\perp}$ $\rho$-inavariant [/mm] ist. Was wuerde fuer die Eigenwerte von [mm] $\rho|U$ [/mm] folgen, wenn die Dimension ungerade waere? $1$-dimensionale [mm] $\rho$-invariante [/mm] Unterraeume von $U$ kann es also nicht mehr geben, nur noch $2$-dimensionale.
|
|
|
|