polynomring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
hi!
und gleich noch ne frage:
sei K ein körper, dann ist K[t] ein kommutativer ring. ist er auch unitär?
meine gedanken:
wenn ich auf K[t] eine weitere multiplikation einführe
* : K x K[t] -> K[t] mit (a,f) [mm] \mapsto [/mm] a*f
die erklärt ist durch a*( [mm] x_{n}t^n [/mm] + [mm] x_{n-1}t^{n-1} [/mm] + ... + [mm] x_{0} [/mm] ) = [mm] (ax_{n})t^n [/mm] + ... + [mm] (ax_{0})
[/mm]
dann ist K[t] ein unitärer komm. ring. das neutr. el. bzgl. mult. ist das neutr. el. bzgl. mult. in K.
wenn ich solch eine mult. nicht einführe, kommt es ganz darauf an, was ich in t einsetze.
es stellt sich also die frage, ob das einführen dieser mult. erlaubt ist, zu keinen einschränkungen führt, in die theorie implementiert ist, ...???
wie steht es damit?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:22 Sa 12.03.2005 | Autor: | andreas |
hi
so wie ich das sehe heißt unitärer ring einfach nur, dass es eine $1$ in dem ring gibt, also ein neutrales element bezüglich der multiplikation. ist das richtig?
wenn du den polynomring betrachtets hast du ja die verknüpfungen schon gegebn, wobei die multiplikation realisiert wird durch
[m] \begin{array}{cccc} \cdot: & K[t] \times K[t] & \longrightarrow & K[t] \\ & (f, g) & \longmapsto & f\cdot g \end{array} [/m]
mit [mm] $f\cdot [/mm] g = [mm] \sum_{k = 0}^{n+m} \left( \sum_{\mu + \nu = k} a_\mu b_\nu \right) t^k$, [/mm] wenn $f = [mm] \sum_{k=0}^m a_k t^k$ [/mm] und $g = [mm] \sum_{k=0}^n b_k t^k$ [/mm] (dies ist einfach die ganz gewöhnliche multiplikation von polynomen). nun musst du prüfen, ob es bezüglich dieser multiplikation ein neutrales element gibt. da $K$ ein multiplikativ neutrales element besitzt, nämlich [mm] $1_K$ [/mm] und $K$ als teilring des polynomrings aufgefasst werden kann (nämlich genau als die konstanten polynome) ist der einzige kandidat somit das polynom, dass konstant [mm] $1_K$ [/mm] ist!
jetzt kannst du ja einmal versuche nachzurechnen, dass es dies auch tut!
zu deiner frage, ob das einführen einer neuen multiplikation erlaubt ist: nun, wenn du den polynomring betrachtets geht man normalerweise von den kanonischen verknüpfungen aus. außerdem muss die multiplikation in ringen eine verknüpfung von zwei ringelemeneten sein - bei dir ist es eine verknüpfung eines körperelements mit einem ringelement (damit machst du dann [m]K[t][/m] zu einem $K$-vektorraum, aber ich denke, du wolltest es hier als ring betrachten?)
wenn du noch fragen hast: nur zu ...
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:37 Sa 12.03.2005 | Autor: | calabi-yau |
ahm, ne keine weiteren fragen ;)
dass ich durch die weitere verknüpfung aus K[t] einen K-VR mache, wollte ich auch hinschreiben, habs aber vergessen.
mir ist auch aufgefallen, dass meine verknüpfung schon durch die polynommult. erklärt wird, wenn ich, wie du schon sagtes, K als teilring von K[t] auffasse. also gab es von anfang an eigentlich keine probleme.
danke für die antwort, jetzt muss nur noch meine andere frage beantwortet werden, dann kann ich das endlich abschließen. (du kannst das als versteckten hinweis auffassen ;) )
|
|
|
|