reiner Tensor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:10 Sa 23.04.2005 | Autor: | Gero |
Hallöle alle zusammen,
neues Semster -> neue Probleme! *gg*
Ich bräuchte mal wieder eure Hilfe! Sitze jetzt schon ewig an folgender Aufgabe:
"Sei V endlich-dimensional und [mm] \gamma: [/mm] V* [mm] \otimes [/mm] V [mm] \to [/mm] Lin(V, V ) der kanonische Isomorphismus. V* sei Dualraum.
a.) Zeige: X [mm] \in [/mm] V* [mm] \otimes [/mm] V ist genau dann ein reiner Tensor, wenn [mm] Rang(\gamma(X)) \le [/mm] 1 ist.
b.) Sei S : V* [mm] \otimes [/mm] V [mm] \to [/mm] K linear, definiert durch [mm] S(\alpha \otimes [/mm] v) = [mm] \alpha(v).
[/mm]
Zeige: S = Spur [mm] \circ \gamma."
[/mm]
Kann mir jemand vielleicht helfen? Danke schonmal im voraus und noch ein schönes Wochenende!
Gero
|
|
|
|
Hallo!
Also, auf Anhieb sehe ich eine Richtung von a) und Teil b)... das poste ich mal, die andere Richtung von a) kannst dann ja selbst versuchen.
Sei erstmal [mm] $e_1, \ldots, e_n$ [/mm] eine Basis von $V$. Ist $v [mm] \in [/mm] V$ und $l [mm] \in [/mm] V°*$, so gibt es Koeffizienten [mm] $v_1, \ldots, v_n$ [/mm] bzw. [mm] $l_1, \ldots, l_n$ [/mm] mit
$v = [mm] \sum_{i=1}^n v_i e_i$ [/mm] und $l = [mm] \sum_{i=1}^n l_i e_i^*$.
[/mm]
Man kann auch sagen, es gilt [mm] $l_i [/mm] = [mm] l(e_i)$.
[/mm]
Zu a), eine Richtung: sei also $X = l [mm] \otimes [/mm] v$ ein reiner Tensor. Dann ist die Matrix von [mm] $\gamma(X)$ [/mm] gegeben durch $S = [mm] (v_i \cdot l_j)_{i,j}$. [/mm] Daraus sieht man aber bereits, dass je zwei Zeilen Vielfache voneinander sind. Und damit ist der Rang von [mm] $\gamma(X)$ [/mm] 1 oder gar 0.
Zu b): auch das sieht man an der Matrixdarstellung. Schließlich ist $l(v) = [mm] \sum_{i=1}^n l_i v_i [/mm] = [mm] \mbox{Spur}(S)$.
[/mm]
Lars
|
|
|
|