www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - schräge Projektion
schräge Projektion < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schräge Projektion: Hey
Status: (Frage) beantwortet Status 
Datum: 12:35 Sa 13.07.2013
Autor: looney_tune

Aufgabe
Betrachtet wird die schräge Projektion auf die Ebene G:x-2y+2z=8 längs des Vektors [mm] \vec{v}= \vektor{6\\ 1\\-1} [/mm]

Die Projektion wird durch eine affin lineare Abbildung f mit [mm] f(\overrightarrow{OQ})= P*\overrightarrow{OQ}+\overrightarrow{OT} [/mm]  beschrieben. Bestimmen Sie mit Hilfe des Householder-Formalismus die Matrix P sowie den Translationsvektor [mm] \overrightarrow{OT}. [/mm]

Die Formel für die Profektion auf eine affine Ebene lautet:  [mm] \overrightarrow{OQ}=(E-N)*\overrightarrow{OT}+\overrightarrow{OT}. [/mm]
N berechne ich ja so: N= [mm] \bruch{1}{\vec{v}\vec{n}}*\pmat{ \vec{v_{1}}\vec{n_{1}} & \vec{v_{1}}\vec{n_{2}}&\vec{v_{1}}\vec{n_{3}} \\ ... & ... & ...\\ ... & ... & ... } [/mm] = [mm] \bruch{1}{2}* \pmat{ 6 & -12 & 12 \\ 1 & -2 & 2\\ -1 & 2 & -2 } [/mm]

Ich weiß nur nicht wie ich den Translationsvektor [mm] \overrightarrow{OT} [/mm] berechnen soll?

        
Bezug
schräge Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 So 14.07.2013
Autor: leduart

Hallo
OT ist doch der Abstandsvektor der Ebene von 0
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]