surjektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:00 Mi 07.11.2007 | Autor: | cupcake |
Aufgabe | f: Y -> Z ; g: X-> Y
a) f°g surjektiv -> f surjektiv
b) f°g injektiv -> g injektiv |
Ich soll das "begründen"... aber irgendwie find ich nix aussagekräftiges, bzw weiß nicht ob das reicht..
also bei a hab ich einfach nen Text, der besagt, dass wenn es (weil f°g surjektiv) ein x element X gibt dem ein z element Z zugeordnet wird, es auch bei f ein y element Y geben muss, dem ein z element Z zugeordnet ist.. aber das hört sich irgendwie zum einen falsch und zum a nderen nicht sehr mathematisch bewiesen an.. :o( weiß jemand weiter??
Danke schonmal, cupcake
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:08 Mi 07.11.2007 | Autor: | o.tacke |
Hallo, cupcake!
Das kann man recht einfach über Kontraposition beweisen, d. h. man nimmt das Gegenteil an und führt das ganze auf einen Widerspruch.
Zu a)
Definition von Surjektivität: f heißt surjektiv, falls es zu jedem [mm] {n}\in{N} [/mm] (mindestens) ein [mm] {m}\in{M} [/mm] mit f(m)=n gibt.
Angenommen, [mm] {f}\circ{g} [/mm] sei surjektiv, f aber nicht surjektiv. Dann gibt es nicht zu jedem [mm] {z}\in{Z} [/mm] ein [mm] {y}\in{Y} [/mm] mit f(y)=z. Folglich existiert wegen f(g(x))=z wiederum nicht zu jedem [mm] {z}\in{Z} [/mm] ein [mm] {x}\in{X} [/mm] mit [mm] {f}\circ{g}(x)=z. [/mm] Dann ist [mm] {f}\circ{g} [/mm] nicht surjektiv.
Wir erhalten einen Widerspruch zu unserer Annahme, alsu muss f surjektiv sein.
Zu b)
Definition von Injektivität: f heißt injektiv, falls für alle [mm] {m,m'}\in{M} [/mm] gilt:
f(m)=f(m') [mm] \Rightarrow [/mm] m=m'.
Angenommen, [mm] {f}\circ{g} [/mm] sei injektiv, g aber nicht injektiv. Dann existieren [mm] {x,x'}\in{X} [/mm] für die gilt: g(x)=g(x') mit x [mm] \not= [/mm] x'
Da [mm] {f}\circ{g}(x)=f(g(x)) [/mm] folgt: f(g(x))=f(g(x')) mit x [mm] \not= [/mm] x'
Also ist [mm] {f}\circ{g} [/mm] nicht injektiv.
Wir erhalten einen Widerspruch zu unserer Annahme, also muss g injektiv sein.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:33 Mi 07.11.2007 | Autor: | cupcake |
Achsooo.. das is natürlich sehr schlüssig diesen Weg zu gehen, da wär ich selbst nicht drauf gekommen.. Habs auch total nachvollzogen!
vielen Dank! :o)
|
|
|
|