www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Vorkurszettel
Kursdaten anzeigenListe aller VorkurseDruckansicht
Dietlind Bäro
Daniel Metzsch
www.matheraum.de
Mathe für's ABI 2008
Aufgabenblatt 4
Abgabe: Mo 26.11.2007 20:00
12.11.2007
Aufgabe 1
Zu jedem $ k > 0_ $ ist eine Funktion $ f_k $ gegeben durch
$ f_k(t)=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}e^{2k\cdot{}t}=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}\left(e^{k\cdot{}t}\right)^2 $ ; $ t\in \IR $.

a. Bestimmen Sie die Schnittpunkte mit der t-Achse, die Hoch-, Tief- und Wendepunkte sowie die Asymptoten des Graphen von $ f_k. $

b. Begründen Sie, dass der folgende Graph zu $ f_{0,5} $ gehört.
[Dateianhang]

c. Die t-Achse und der Graph von $ f_k $ begrenzen eine bis „ins Unendliche reichende“ Fläche.
Berechnen Sie die Gleichung der zur t-Achse senkrechten Geraden g, die diese
Fläche in zwei Teilflächen einteilt, sodass der Inhalt der linken Teilfläche dreimal so groß ist wie der Inhalt der rechten Teilfläche.

d. Der Graph von $ f_{0,5} $ (siehe Aufgabenteil b) zeigt den Verlauf einer Schädlingspopulation in einem Wald während der Bekämpfung mit einem Pestizid, beginnend bei $ t_1 $ = 0 und endend zu der Zeit $ t_2 $ , ab der keine Schädlinge im Wald mehr vorhanden sind.
Dabei gilt Folgendes:
1 Einheit der Funktionswerte $ \hat= $ 1000 Schädlinge
1 Einheit der t-Werte $ \hat= $ 1 Tag

d1. Beschreiben Sie kurz den Verlauf der Population im Intervall $ [t_1;t_2]. $ Gehen Sie dabei auf die Größe und auf die Wachstumsgeschwindigkeit der Schädlingspopulation ein.

d2. 18 Stunden bevor die Population am stärksten wuchs, wurde das Pestizid über dem Wald versprüht. Bestimmen Sie den Zeitpunkt und die Anzahl der Schädlinge zu diesem Zeitpunkt.

d3. Jeder Schädling vertilgt pro Tag $ 3 cm^2 $ Blattfläche. Wie viel Blattfläche wurde von den Schädlingen insgesamt gefressen?

Kursdaten anzeigenListe aller VorkurseDruckansicht
^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]