www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Partition
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Partition

Definition Partition


Schule


Universität

Es seien X, A Mengen. Eine Familie $ P=\{X_{\alpha}\}_{\alpha\in A} $ von Teilmengen von X heißt eine Partition von X, wenn gilt:

$ (P_1) $ $ X = \bigcup\limits_{\alpha \in A}X_{\alpha} $,

$ (P_2) $ $ X_{\alpha} \ne \emptyset $ für alle $ \alpha \in A $,

$ (P_3) $ aus $ X_{\alpha} \cap X_{\beta} \ne \emptyset $ folgt $ X_{\alpha} = X_{\beta} $ $ (X_{\alpha},X_{\beta} \in  P) $.


Bemerkung

Jede Äquivalenzrelation R auf einer Menge X liefert eine Partition $ P(R) = \{[x]_R\}_{x \in X} $.


Quelle: isbn3446130799

Erstellt: Mi 20.07.2005 von Stefan
Letzte Änderung: Mi 10.08.2005 um 23:54 von Stefan
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]