www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Stammfunktion
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Stammfunktion

Definition Stammfunktion


Schule

eine differenzierbare Funktion F heißt Stammfunktion zu einer Funktion f im gemeinsamen Definitionsbereich, wenn gilt:

F'(x) = f(x)


Folgerungen:
1. Jede Integralfunktion ist auch eine Stammfunktion (Die Umkehrung gilt aber nicht!).

2. Zwei Stammfunktionen F und G zur selben Funktion f (also F'=f und G'=f) unterscheiden sich nur durch eine additive Konstante, denn es gilt:


[F(x) - G(x)]' = f(x) - f(x) = 0 $ \Rightarrow $ F(x) = G(x) + C

Das bedeutet, die Graphen aller Stammfunktionen zu einer Funktion f sind parallel zueinander oder im Koordinatensystem nur nach oben oder unten verschoben.


Universität
Erstellt: Mo 08.11.2004 von informix
Letzte Änderung: Sa 30.09.2006 um 17:39 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]